!11290 Add dynamic shape support & testcases to MatMul, BatchMatMul gpu
From: @TFbunny Reviewed-by: @tom__chen,@robingrosman Signed-off-by: @robingrosmanpull/11290/MERGE
commit
be14046b0e
@ -0,0 +1,54 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _inner_ops as inner
|
||||
|
||||
class MatMul_d(nn.Cell):
|
||||
def __init__(self):
|
||||
super(MatMul_d, self).__init__()
|
||||
self.test_dynamic = inner.GpuConvertToDynamicShape()
|
||||
self.matmul = P.MatMul()
|
||||
|
||||
def construct(self, x, y):
|
||||
x = self.test_dynamic(x)
|
||||
y = self.test_dynamic(y)
|
||||
return self.matmul(x, y)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_MatMul_dynamic():
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
net = MatMul_d()
|
||||
|
||||
x1 = np.arange(2).reshape(1, 2).astype(np.float32)
|
||||
y1 = np.arange(4).reshape(2, 2).astype(np.float32)
|
||||
output1 = net(Tensor(x1), Tensor(y1))
|
||||
expect1 = np.matmul(x1, y1)
|
||||
np.testing.assert_array_almost_equal(output1.asnumpy(), expect1)
|
||||
|
||||
x2 = np.arange(102).reshape(34, 3).astype(np.float32)
|
||||
y2 = np.arange(18).reshape(3, 6).astype(np.float32)
|
||||
output2 = net(Tensor(x2), Tensor(y2))
|
||||
expect2 = np.matmul(x2, y2)
|
||||
np.testing.assert_array_almost_equal(output2.asnumpy(), expect2)
|
Loading…
Reference in new issue