!9528 add tf tensorlist parsers

From: @wangzhe128
Reviewed-by: @hangangqiang,@zhanghaibo5
Signed-off-by: @hangangqiang
pull/9528/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit be9a9bbebd

@ -77,6 +77,8 @@ TypePtr TypeIdToType(TypeId id) {
return kInt16;
case kNumberTypeInt32:
return kInt32;
case kNumberTypeInt:
return kInt32;
case kNumberTypeInt64:
return kInt64;
case kNumberTypeUInt8:
@ -119,6 +121,8 @@ TypePtr TypeIdToType(TypeId id) {
return kSlice;
case kObjectTypeKeyword:
return kKeyword;
case kObjectTypeTensorType:
return kTensorType;
case kTypeUnknown:
return kTypeNone;
default:

@ -1194,6 +1194,7 @@ table TensorListSetItem {
table TensorListReserve {
elementDType : int;
shapeType : int;
}
table All {

@ -150,6 +150,11 @@
#include "src/ops/unsorted_segment_sum.h"
#include "src/ops/reciprocal.h"
#include "src/ops/constant.h"
#include "src/ops/tensorlistfromtensor.h"
#include "src/ops/tensorlistgetitem.h"
#include "src/ops/tensorlistsetitem.h"
#include "src/ops/tensorlistreserve.h"
#include "src/ops/tensorliststack.h"
#ifdef SUPPORT_TRAIN
#include "src/ops/neg_grad.h"
@ -906,6 +911,16 @@ PrimitiveC *PrimitiveC::Create(mindspore::schema::PrimitiveT *primitive) {
return new (std::nothrow) Reciprocal(primitive);
case schema::PrimitiveType_Constant:
return new (std::nothrow) Constant(primitive);
case schema::PrimitiveType_TensorListFromTensor:
return new (std::nothrow) TensorListFromTensor(primitive);
case schema::PrimitiveType_TensorListGetItem:
return new (std::nothrow) TensorListGetItem(primitive);
case schema::PrimitiveType_TensorListSetItem:
return new (std::nothrow) TensorListSetItem(primitive);
case schema::PrimitiveType_TensorListReserve:
return new (std::nothrow) TensorListReserve(primitive);
case schema::PrimitiveType_TensorListStack:
return new (std::nothrow) TensorListStack(primitive);
#ifdef SUPPORT_TRAIN
case schema::PrimitiveType_ActivationGrad:

@ -52,6 +52,7 @@ STATUS TFActivationParser::Parse(const tensorflow::NodeDef &tf_op,
attr->type = schema::ActivationType_TANH;
} else {
MS_LOG(ERROR) << "unsupported activation type:" << tf_op.op();
return RET_ERROR;
}
primitive->value.type = schema::PrimitiveType_Activation;

@ -117,6 +117,22 @@ STATUS TFArithmeticParser::Parse(const tensorflow::NodeDef &tf_op,
}
primitive->value.type = schema::PrimitiveType_LessEqual;
primitive->value.value = attr.release();
} else if (tf_op.op() == "Equal") {
auto attr = std::make_unique<schema::EqualT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
primitive->value.type = schema::PrimitiveType_Equal;
primitive->value.value = attr.release();
} else if (tf_op.op() == "NotEqual") {
auto attr = std::make_unique<schema::NotEqualT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
primitive->value.type = schema::PrimitiveType_NotEqual;
primitive->value.value = attr.release();
}
*primitiveC = PrimitiveC::Create(primitive.release());
@ -144,5 +160,7 @@ TFNodeRegistrar g_tfGreaterParser("Greater", new TFArithmeticParser());
TFNodeRegistrar g_tfGreaterEqualParser("GreaterEqual", new TFArithmeticParser());
TFNodeRegistrar g_tfLessParser("Less", new TFArithmeticParser());
TFNodeRegistrar g_tfLessEqualParser("LessEqual", new TFArithmeticParser());
TFNodeRegistrar g_tfEqualParser("Equal", new TFArithmeticParser());
TFNodeRegistrar g_tfNotEqualParser("NotEqual", new TFArithmeticParser());
} // namespace lite
} // namespace mindspore

@ -41,6 +41,7 @@ STATUS TFAssertParser::Parse(const tensorflow::NodeDef &tf_op,
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
tensorflow::AttrValue attr_value;
if (!TensorFlowUtils::FindAttrValue(tf_op, "summarize", &attr_value)) {
MS_LOG(ERROR) << "The keep_dims attr should be specified";
@ -56,12 +57,14 @@ STATUS TFAssertParser::Parse(const tensorflow::NodeDef &tf_op,
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
return status;
*output_size = 0; // Assert not have output
for (int i = 0; i < tf_op.input_size(); ++i) {
auto status = AddOpInput(tf_op, i, inputs);
if (status != RET_OK) {
return status;
}
}
return status;
return RET_OK;
}
TFNodeRegistrar g_tfAssertParser("Assert", new TFAssertParser());
} // namespace lite

@ -15,7 +15,6 @@
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_ASSERT_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_ASSERT_PARSER_H_
#include <string>
#include <memory>
#include <map>

@ -45,6 +45,10 @@ STATUS TFConvParser::Parse(const tensorflow::NodeDef &tf_op,
attr->group = 1;
attr->format = TensorFlowUtils::ParseNodeFormat(tf_op);
if (attr->format == schema::Format_NCHW) {
MS_LOG(ERROR) << "TF Conv2D with data_format=NCHW is not supported now";
return RET_ERROR;
}
std::vector<int64_t> dilations(2);
auto status = ParseDilations(tf_op, attr->format, &dilations);

@ -25,10 +25,17 @@
#include "tools/common/graph_util.h"
#include "tools/common/protobuf_utils.h"
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
#include "tools/optimizer/common/gllo_utils.h"
namespace mindspore {
namespace lite {
namespace {
static const std::vector<schema::PrimitiveType> tensorListOutputOpList = {
schema::PrimitiveType_TensorListFromTensor,
schema::PrimitiveType_TensorListSetItem,
schema::PrimitiveType_TensorListReserve,
};
// subgraph node input may be a:output:0/a:z:0
std::string GetFlattenNodeName(std::string input_name) {
std::regex re("\\:+");
@ -107,7 +114,7 @@ STATUS TFModelParser::ConvertConstTensor(const tensorflow::AttrValue &attr_value
}
tensor_size = shape_size * sizeof(float);
param_value->SetTensorData(tensor_data, tensor_size);
} else if (type == kNumberTypeInt32) {
} else if (type == kNumberTypeInt32 || type == kNumberTypeInt) {
auto tensor_data = new (std::nothrow) int[shape_size];
if (tensor_proto.int_val_size() == 1) {
int value = tensor_proto.int_val(0);
@ -445,9 +452,19 @@ STATUS TFModelParser::ConvertOutputTensor(const tensorflow::NodeDef &op, const C
MS_ASSERT(op != nullptr);
MS_ASSERT(anf_node != nullptr);
MS_ASSERT(anf_graph != nullptr);
if (output_size == 1) {
if (IsContain(tensorListOutputOpList, opt::GetCNodeType(anf_node)) && output_size != 1) {
MS_LOG(ERROR) << "tensorlist output op output_size !=1";
return RET_ERROR;
}
if (output_size == 0) {
return RET_OK;
} else if (output_size == 1) {
auto type = kFloat32;
std::vector<int64_t> shape_vector;
anf_node->set_abstract(std::make_shared<abstract::AbstractTensor>(kFloat32, shape_vector));
if (IsContain(tensorListOutputOpList, opt::GetCNodeType(anf_node))) {
type = TypeIdToType(kObjectTypeTensorType);
}
anf_node->set_abstract(std::make_shared<abstract::AbstractTensor>(type, shape_vector));
anf_node_map->insert(std::pair(op.name(), anf_node));
} else {
AbstractBasePtrList abstractList;

@ -0,0 +1,87 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_tensor_list_from_tensor_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFTensorListFromTensorParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs,
int *output_size) {
MS_LOG(INFO) << "TF TensorListFromTensorParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::TensorListFromTensorT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
tensorflow::AttrValue attr_value;
if (!TensorFlowUtils::FindAttrValue(tf_op, "element_dtype", &attr_value)) {
MS_LOG(ERROR) << "The element_dtype attr should be specified";
return RET_ERROR;
}
auto type = TensorFlowUtils::GetTFDataType(attr_value.type());
if (type == kTypeUnknown) {
MS_LOG(ERROR) << "tensor_list_from_tensor element dtype must be known type";
return RET_ERROR;
}
attr->elementDType = type;
if (!TensorFlowUtils::FindAttrValue(tf_op, "shape_type", &attr_value)) {
MS_LOG(ERROR) << "The shape_type attr should be specified";
return RET_ERROR;
}
type = TensorFlowUtils::GetTFDataType(attr_value.type());
if (type == kTypeUnknown) {
MS_LOG(ERROR) << "tensor_list_from_tensor shape type must be known type";
return RET_ERROR;
}
attr->shapeType = type;
primitive->value.type = schema::PrimitiveType_TensorListFromTensor;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
return status;
}
status = AddOpInput(tf_op, 1, inputs);
return status;
}
TFNodeRegistrar g_tfTensorListFromTensorParser("TensorListFromTensor", new TFTensorListFromTensorParser());
} // namespace lite
} // namespace mindspore

@ -0,0 +1,37 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_FROM_TENSOR_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_FROM_TENSOR_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFTensorListFromTensorParser : public TFNodeParser {
public:
TFTensorListFromTensorParser() = default;
~TFTensorListFromTensorParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_FROM_TENSOR_PARSER_H_

@ -0,0 +1,76 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_tensor_list_get_item_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFTensorListGetItemParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF TensorListGetItemParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::TensorListGetItemT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
tensorflow::AttrValue attr_value;
if (!TensorFlowUtils::FindAttrValue(tf_op, "element_dtype", &attr_value)) {
MS_LOG(ERROR) << "The element_dtype attr should be specified";
return RET_ERROR;
}
auto type = TensorFlowUtils::GetTFDataType(attr_value.type());
if (type == kTypeUnknown) {
MS_LOG(ERROR) << "tensor_list_get_item element_dtype must be known type";
return RET_ERROR;
}
attr->elementDType = type;
primitive->value.type = schema::PrimitiveType_TensorListGetItem;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
for (int i = 0; i < 3; ++i) {
auto status = AddOpInput(tf_op, i, inputs);
if (status != RET_OK) {
return status;
}
}
return RET_OK;
}
TFNodeRegistrar g_tfTensorListGetItemParser("TensorListGetItem", new TFTensorListGetItemParser());
} // namespace lite
} // namespace mindspore

@ -0,0 +1,38 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_GET_ITEM_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_GET_ITEM_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFTensorListGetItemParser : public TFNodeParser {
public:
TFTensorListGetItemParser() = default;
~TFTensorListGetItemParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_GET_ITEM_PARSER_H_

@ -0,0 +1,86 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_tensor_list_reserve_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFTensorListReserveParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF TensorListReserveParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::TensorListReserveT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
tensorflow::AttrValue attr_value;
if (!TensorFlowUtils::FindAttrValue(tf_op, "element_dtype", &attr_value)) {
MS_LOG(ERROR) << "The element_dtype attr should be specified";
return RET_ERROR;
}
auto type = TensorFlowUtils::GetTFDataType(attr_value.type());
if (type == kTypeUnknown) {
MS_LOG(ERROR) << "tensor_list_reserve element dtype must be known type";
return RET_ERROR;
}
attr->elementDType = type;
if (!TensorFlowUtils::FindAttrValue(tf_op, "shape_type", &attr_value)) {
MS_LOG(ERROR) << "The shape_type attr should be specified";
return RET_ERROR;
}
type = TensorFlowUtils::GetTFDataType(attr_value.type());
if (type == kTypeUnknown) {
MS_LOG(ERROR) << "tensor_list_reserve shape_type must be known type";
return RET_ERROR;
}
attr->shapeType = type;
primitive->value.type = schema::PrimitiveType_TensorListReserve;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
return status;
}
status = AddOpInput(tf_op, 1, inputs);
return status;
}
TFNodeRegistrar g_tfTensorListReserveParser("TensorListReserve", new TFTensorListReserveParser());
} // namespace lite
} // namespace mindspore

@ -0,0 +1,37 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_RESERVE_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_RESERVE_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFTensorListReserveParser : public TFNodeParser {
public:
TFTensorListReserveParser() = default;
~TFTensorListReserveParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_RESERVE_PARSER_H_

@ -0,0 +1,76 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_tensor_list_set_item_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFTensorListSetItemParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF TensorListSetItemParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::TensorListSetItemT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
tensorflow::AttrValue attr_value;
if (!TensorFlowUtils::FindAttrValue(tf_op, "element_dtype", &attr_value)) {
MS_LOG(ERROR) << "The element_dtype attr should be specified";
return RET_ERROR;
}
auto type = TensorFlowUtils::GetTFDataType(attr_value.type());
if (type == kTypeUnknown) {
MS_LOG(ERROR) << "tensor_list_set_item element dtype must be known type";
return RET_ERROR;
}
attr->elementDType = type;
primitive->value.type = schema::PrimitiveType_TensorListSetItem;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
for (int i = 0; i < 3; ++i) {
auto status = AddOpInput(tf_op, i, inputs);
if (status != RET_OK) {
return status;
}
}
return RET_OK;
}
TFNodeRegistrar g_tfTensorListSetItemParser("TensorListSetItem", new TFTensorListSetItemParser());
} // namespace lite
} // namespace mindspore

@ -0,0 +1,37 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_SET_ITEM_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_SET_ITEM_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFTensorListSetItemParser : public TFNodeParser {
public:
TFTensorListSetItemParser() = default;
~TFTensorListSetItemParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_SET_ITEM_PARSER_H_

@ -0,0 +1,81 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_tensor_list_stack_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFTensorListStackParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
MS_LOG(INFO) << "TF TensorListStackParser";
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "New PrimitiveT failed";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::TensorListStackT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
tensorflow::AttrValue attr_value;
if (!TensorFlowUtils::FindAttrValue(tf_op, "element_dtype", &attr_value)) {
MS_LOG(ERROR) << "The element_dtype attr should be specified";
return RET_ERROR;
}
auto type = TensorFlowUtils::GetTFDataType(attr_value.type());
if (type == kTypeUnknown) {
MS_LOG(ERROR) << "tensor_list_stack element_dtype must be known type";
return RET_ERROR;
}
attr->elementDType = type;
if (!TensorFlowUtils::FindAttrValue(tf_op, "num_elements", &attr_value)) {
MS_LOG(ERROR) << "The element_dtype attr should be specified";
return RET_ERROR;
}
attr->numElements = attr_value.i();
primitive->value.type = schema::PrimitiveType_TensorListStack;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
auto status = AddOpInput(tf_op, 0, inputs);
if (status != RET_OK) {
return status;
}
status = AddOpInput(tf_op, 1, inputs);
return status;
}
TFNodeRegistrar g_tfTensorListStackParser("TensorListStack", new TFTensorListStackParser());
} // namespace lite
} // namespace mindspore

@ -0,0 +1,37 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_STACK_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_STACK_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFTensorListStackParser : public TFNodeParser {
public:
TFTensorListStackParser() = default;
~TFTensorListStackParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_TENSOR_LIST_STACK_PARSER_H_

@ -23,17 +23,24 @@
namespace mindspore {
namespace lite {
static const std::unordered_map<int, mindspore::TypeId> TF_TYPE_MAP = {
{tensorflow::DT_INT8, mindspore::kNumberTypeInt8}, {tensorflow::DT_UINT8, mindspore::kNumberTypeUInt8},
{tensorflow::DT_INT16, mindspore::kNumberTypeInt16}, {tensorflow::DT_UINT16, mindspore::kNumberTypeUInt16},
{tensorflow::DT_INT32, mindspore::kNumberTypeInt32}, {tensorflow::DT_INT64, mindspore::kNumberTypeInt64},
{tensorflow::DT_HALF, mindspore::kNumberTypeFloat16}, {tensorflow::DT_FLOAT, mindspore::kNumberTypeFloat32},
{tensorflow::DT_DOUBLE, mindspore::kNumberTypeFloat64}, {tensorflow::DT_COMPLEX64, mindspore::kNumberTypeComplex64},
{tensorflow::DT_BOOL, mindspore::kNumberTypeBool}, {tensorflow::DT_STRING, mindspore::kObjectTypeString}};
{tensorflow::DT_INT8, mindspore::kNumberTypeInt8},
{tensorflow::DT_UINT8, mindspore::kNumberTypeUInt8},
{tensorflow::DT_INT16, mindspore::kNumberTypeInt16},
{tensorflow::DT_UINT16, mindspore::kNumberTypeUInt16},
{tensorflow::DT_INT32, mindspore::kNumberTypeInt32},
{tensorflow::DT_INT64, mindspore::kNumberTypeInt64},
{tensorflow::DT_HALF, mindspore::kNumberTypeFloat16},
{tensorflow::DT_FLOAT, mindspore::kNumberTypeFloat32},
{tensorflow::DT_DOUBLE, mindspore::kNumberTypeFloat64},
{tensorflow::DT_COMPLEX64, mindspore::kNumberTypeComplex64},
{tensorflow::DT_BOOL, mindspore::kNumberTypeBool},
{tensorflow::DT_STRING, mindspore::kObjectTypeString},
{tensorflow::DT_VARIANT, mindspore::kObjectTypeTensorType}};
TypeId TensorFlowUtils::GetTFDataType(const tensorflow::DataType &tf_data_type) {
auto iter = TF_TYPE_MAP.find(tf_data_type);
if (iter == TF_TYPE_MAP.end()) {
MS_LOG(ERROR) << "unsupported TF data type: " << tf_data_type;
MS_LOG(WARNING) << "unsupported TF data type: " << tf_data_type;
return kTypeUnknown;
}
return iter->second;

Loading…
Cancel
Save