|
|
|
@ -419,8 +419,11 @@ class Conv2dBnFoldQuant(Cell):
|
|
|
|
|
padding (int): Implicit paddings on both sides of the input. Default: 0.
|
|
|
|
|
eps (float): Parameters for BatchNormal. Default: 1e-5.
|
|
|
|
|
momentum (float): Parameters for BatchNormal op. Default: 0.997.
|
|
|
|
|
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
|
|
|
|
|
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the
|
|
|
|
|
convolution kernel. Default: 'normal'.
|
|
|
|
|
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the
|
|
|
|
|
bias vector. Default: 'zeros'.
|
|
|
|
|
beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the
|
|
|
|
|
beta vector. Default: 'zeros'.
|
|
|
|
|
gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the
|
|
|
|
@ -460,7 +463,9 @@ class Conv2dBnFoldQuant(Cell):
|
|
|
|
|
group=1,
|
|
|
|
|
eps=1e-5,
|
|
|
|
|
momentum=0.997,
|
|
|
|
|
has_bias=False,
|
|
|
|
|
weight_init='normal',
|
|
|
|
|
bias_init='zeros',
|
|
|
|
|
beta_init='zeros',
|
|
|
|
|
gamma_init='ones',
|
|
|
|
|
mean_init='zeros',
|
|
|
|
@ -484,6 +489,7 @@ class Conv2dBnFoldQuant(Cell):
|
|
|
|
|
self.group = group
|
|
|
|
|
self.eps = eps
|
|
|
|
|
self.momentum = momentum
|
|
|
|
|
self.has_bias = has_bias
|
|
|
|
|
self.quant_delay = quant_delay
|
|
|
|
|
self.freeze_bn = freeze_bn
|
|
|
|
|
self.fake = fake
|
|
|
|
@ -516,6 +522,11 @@ class Conv2dBnFoldQuant(Cell):
|
|
|
|
|
weight_shape = [out_channels, in_channels // group, *self.kernel_size]
|
|
|
|
|
channel_axis = 0
|
|
|
|
|
self.weight = Parameter(initializer(weight_init, weight_shape), name='weight')
|
|
|
|
|
self.bias_add = P.BiasAdd()
|
|
|
|
|
if check_bool(has_bias):
|
|
|
|
|
self.bias = Parameter(initializer(bias_init, [out_channels]), name='bias')
|
|
|
|
|
else:
|
|
|
|
|
self.bias = None
|
|
|
|
|
|
|
|
|
|
# initialize BatchNorm Parameter
|
|
|
|
|
self.gamma = Parameter(initializer(gamma_init, [out_channels]), name='gamma')
|
|
|
|
@ -562,6 +573,8 @@ class Conv2dBnFoldQuant(Cell):
|
|
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
|
out_conv = self.conv(x, self.weight)
|
|
|
|
|
if self.has_bias:
|
|
|
|
|
out_conv = self.bias_add(out_conv, self.bias)
|
|
|
|
|
# BN fold1
|
|
|
|
|
batch_mean, batch_std, running_mean, running_std = self.batchnorm_fold(out_conv,
|
|
|
|
|
self.moving_mean,
|
|
|
|
@ -572,6 +585,8 @@ class Conv2dBnFoldQuant(Cell):
|
|
|
|
|
if self.fake:
|
|
|
|
|
weight = self.fake_quant_weight(weight)
|
|
|
|
|
out = self.conv(x, weight)
|
|
|
|
|
if self.has_bias:
|
|
|
|
|
out = self.bias_add(out, self.bias)
|
|
|
|
|
# BN fold2
|
|
|
|
|
if self.is_gpu:
|
|
|
|
|
if self.training:
|
|
|
|
|