|
|
|
@ -22,7 +22,7 @@ from mindspore import Tensor
|
|
|
|
|
from mindspore.nn.optim.momentum import Momentum
|
|
|
|
|
from mindspore.train.model import Model
|
|
|
|
|
from mindspore.context import ParallelMode
|
|
|
|
|
from mindspore.train.callback import Callback, LossMonitor, ModelCheckpoint, CheckpointConfig
|
|
|
|
|
from mindspore.train.callback import Callback, ModelCheckpoint, CheckpointConfig
|
|
|
|
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
|
|
|
|
from mindspore.communication.management import init, get_rank, get_group_size
|
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
@ -59,13 +59,33 @@ class MyTimeMonitor(Callback):
|
|
|
|
|
def step_begin(self, run_context):
|
|
|
|
|
self.step_time = time.time()
|
|
|
|
|
def step_end(self, run_context):
|
|
|
|
|
cb_params = run_context.original_args()
|
|
|
|
|
loss = cb_params.net_outputs
|
|
|
|
|
|
|
|
|
|
if isinstance(loss, (tuple, list)):
|
|
|
|
|
if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray):
|
|
|
|
|
loss = loss[0]
|
|
|
|
|
|
|
|
|
|
if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray):
|
|
|
|
|
loss = np.mean(loss.asnumpy())
|
|
|
|
|
|
|
|
|
|
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
|
|
|
|
|
|
|
|
|
|
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)):
|
|
|
|
|
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training.".format(
|
|
|
|
|
cb_params.cur_epoch_num, cur_step_in_epoch))
|
|
|
|
|
step_mseconds = (time.time() - self.step_time) * 1000
|
|
|
|
|
fps = self.batch_size / step_mseconds *1000 * self.size
|
|
|
|
|
print("Epoch time: {:5.3f} ms, fps: {:d} img/sec.".format(step_mseconds, int(fps)), flush=True, end=" ")
|
|
|
|
|
|
|
|
|
|
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="GPU", dtype="fp16"):
|
|
|
|
|
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True)
|
|
|
|
|
print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num, cur_step_in_epoch, loss),
|
|
|
|
|
"Epoch time: {:5.3f} ms, fps: {:d} img/sec.".format(step_mseconds, int(fps)), flush=True)
|
|
|
|
|
|
|
|
|
|
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="GPU", dtype="fp16",
|
|
|
|
|
device_num=1):
|
|
|
|
|
if device_num == 1:
|
|
|
|
|
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True)
|
|
|
|
|
else:
|
|
|
|
|
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True,
|
|
|
|
|
num_shards=device_num, shard_id=get_rank())
|
|
|
|
|
image_size = 224
|
|
|
|
|
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
|
|
|
|
|
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
|
|
|
|
@ -185,8 +205,7 @@ def train():
|
|
|
|
|
if mode == context.PYNATIVE_MODE:
|
|
|
|
|
print_per_steps = 1
|
|
|
|
|
time_cb = MyTimeMonitor(total_batch, print_per_steps)
|
|
|
|
|
loss_cb = LossMonitor()
|
|
|
|
|
cb = [time_cb, loss_cb]
|
|
|
|
|
cb = [time_cb]
|
|
|
|
|
if save_ckpt:
|
|
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=5 * step_size, keep_checkpoint_max=5)
|
|
|
|
|
ckpt_cb = ModelCheckpoint(prefix="resnet_benchmark", directory=ckpt_save_dir, config=config_ck)
|
|
|
|
|