|
|
|
@ -28,25 +28,25 @@ context.set_context(device_target='GPU')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Transpose(nn.Cell):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
def __init__(self, nptype):
|
|
|
|
|
super(Transpose, self).__init__()
|
|
|
|
|
self.transpose = P.Transpose()
|
|
|
|
|
|
|
|
|
|
self.x_2D = Parameter(initializer(Tensor(np.arange(5 * 6).reshape(5, 6).astype(np.float32)), [5, 6]),
|
|
|
|
|
self.x_2D = Parameter(initializer(Tensor(np.arange(5 * 6).reshape(5, 6).astype(nptype)), [5, 6]),
|
|
|
|
|
name='x_2D')
|
|
|
|
|
self.perm_2D = (1, 0)
|
|
|
|
|
|
|
|
|
|
self.x_3D = Parameter(initializer(Tensor(np.arange(2 * 2 * 4).reshape(2, 2, 4).astype(np.float32)), [2, 2, 4]),
|
|
|
|
|
self.x_3D = Parameter(initializer(Tensor(np.arange(2 * 2 * 4).reshape(2, 2, 4).astype(nptype)), [2, 2, 4]),
|
|
|
|
|
name='x_3D')
|
|
|
|
|
self.perm_3D = (1, 0, 2)
|
|
|
|
|
|
|
|
|
|
self.x_4D = Parameter(
|
|
|
|
|
initializer(Tensor(np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5).astype(np.float32)), [2, 3, 4, 5]),
|
|
|
|
|
initializer(Tensor(np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5).astype(nptype)), [2, 3, 4, 5]),
|
|
|
|
|
name='x_4D')
|
|
|
|
|
self.perm_4D = (0, 1, 2, 3)
|
|
|
|
|
|
|
|
|
|
self.x_5D = Parameter(
|
|
|
|
|
initializer(Tensor(np.arange(1 * 2 * 3 * 4 * 5).reshape(1, 2, 3, 4, 5).astype(np.float32)),
|
|
|
|
|
initializer(Tensor(np.arange(1 * 2 * 3 * 4 * 5).reshape(1, 2, 3, 4, 5).astype(nptype)),
|
|
|
|
|
[1, 2, 3, 4, 5]), name='x_5D')
|
|
|
|
|
self.perm_5D = (1, 0, 3, 4, 2)
|
|
|
|
|
|
|
|
|
@ -56,11 +56,8 @@ class Transpose(nn.Cell):
|
|
|
|
|
self.transpose(self.x_4D, self.perm_4D), self.transpose(self.x_5D, self.perm_5D))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_transpose():
|
|
|
|
|
transpose = Transpose()
|
|
|
|
|
def transpose1(nptype):
|
|
|
|
|
transpose = Transpose(nptype)
|
|
|
|
|
output = transpose()
|
|
|
|
|
|
|
|
|
|
expect0 = np.array([[[0, 6, 12, 18, 24],
|
|
|
|
@ -68,11 +65,11 @@ def test_transpose():
|
|
|
|
|
[2, 8, 14, 20, 26],
|
|
|
|
|
[3, 9, 15, 21, 27],
|
|
|
|
|
[4, 10, 16, 22, 28],
|
|
|
|
|
[5, 11, 17, 23, 29]]]).astype(np.float32)
|
|
|
|
|
[5, 11, 17, 23, 29]]]).astype(nptype)
|
|
|
|
|
expect1 = np.array([[[[0, 1, 2, 3],
|
|
|
|
|
[8, 9, 10, 11]],
|
|
|
|
|
[[4, 5, 6, 7],
|
|
|
|
|
[12, 13, 14, 15]]]]).astype(np.float32)
|
|
|
|
|
[12, 13, 14, 15]]]]).astype(nptype)
|
|
|
|
|
expect2 = np.array([[[[[0, 1, 2, 3, 4],
|
|
|
|
|
[5, 6, 7, 8, 9],
|
|
|
|
|
[10, 11, 12, 13, 14],
|
|
|
|
@ -97,7 +94,7 @@ def test_transpose():
|
|
|
|
|
[[100, 101, 102, 103, 104],
|
|
|
|
|
[105, 106, 107, 108, 109],
|
|
|
|
|
[110, 111, 112, 113, 114],
|
|
|
|
|
[115, 116, 117, 118, 119]]]]]).astype(np.float32)
|
|
|
|
|
[115, 116, 117, 118, 119]]]]]).astype(nptype)
|
|
|
|
|
expect3 = np.array([[[[[[0, 20, 40],
|
|
|
|
|
[1, 21, 41],
|
|
|
|
|
[2, 22, 42],
|
|
|
|
@ -138,8 +135,26 @@ def test_transpose():
|
|
|
|
|
[76, 96, 116],
|
|
|
|
|
[77, 97, 117],
|
|
|
|
|
[78, 98, 118],
|
|
|
|
|
[79, 99, 119]]]]]]).astype(np.float32)
|
|
|
|
|
[79, 99, 119]]]]]]).astype(nptype)
|
|
|
|
|
assert (output[0].asnumpy() == expect0).all()
|
|
|
|
|
assert (output[1].asnumpy() == expect1).all()
|
|
|
|
|
assert (output[2].asnumpy() == expect2).all()
|
|
|
|
|
assert (output[3].asnumpy() == expect3).all()
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_transpose_float32():
|
|
|
|
|
transpose1(np.float32)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_transpose_float16():
|
|
|
|
|
transpose1(np.float16)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_transpose_int32():
|
|
|
|
|
transpose1(np.int32)
|
|
|
|
|