Optimizer parameters,Improve yolov3_darknet53 network precision

pull/9440/head
wsq3 4 years ago
parent af62b15c84
commit c811e8c714

File diff suppressed because it is too large Load Diff

@ -72,7 +72,9 @@ do
--data_dir=$DATASET_PATH \
--pretrained_backbone=$PRETRAINED_BACKBONE \
--is_distributed=1 \
--lr=0.1 \
--lr=0.001 \
--loss_scale=1024 \
--weight_decay=0.016 \
--T_max=320 \
--max_epoch=320 \
--warmup_epochs=4 \

@ -65,7 +65,9 @@ python train.py \
--data_dir=$DATASET_PATH \
--pretrained_backbone=$PRETRAINED_BACKBONE \
--is_distributed=0 \
--lr=0.1 \
--lr=0.001 \
--loss_scale=1024 \
--weight_decay=0.016 \
--T_max=320 \
--max_epoch=320 \
--warmup_epochs=4 \

@ -13,8 +13,7 @@
# limitations under the License.
# ============================================================================
"""Util class or function."""
from mindspore.train.serialization import load_checkpoint
import mindspore.nn as nn
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.common.dtype as mstype
from .yolo import YoloLossBlock
@ -57,58 +56,18 @@ class AverageMeter:
def load_backbone(net, ckpt_path, args):
"""Load darknet53 backbone checkpoint."""
param_dict = load_checkpoint(ckpt_path)
yolo_backbone_prefix = 'feature_map.backbone'
darknet_backbone_prefix = 'network.backbone'
find_param = []
not_found_param = []
net.init_parameters_data()
for name, cell in net.cells_and_names():
if name.startswith(yolo_backbone_prefix):
name = name.replace(yolo_backbone_prefix, darknet_backbone_prefix)
if isinstance(cell, (nn.Conv2d, nn.Dense)):
darknet_weight = '{}.weight'.format(name)
darknet_bias = '{}.bias'.format(name)
if darknet_weight in param_dict:
cell.weight.set_data(param_dict[darknet_weight].data)
find_param.append(darknet_weight)
else:
not_found_param.append(darknet_weight)
if darknet_bias in param_dict:
cell.bias.set_data(param_dict[darknet_bias].data)
find_param.append(darknet_bias)
else:
not_found_param.append(darknet_bias)
elif isinstance(cell, (nn.BatchNorm2d, nn.BatchNorm1d)):
darknet_moving_mean = '{}.moving_mean'.format(name)
darknet_moving_variance = '{}.moving_variance'.format(name)
darknet_gamma = '{}.gamma'.format(name)
darknet_beta = '{}.beta'.format(name)
if darknet_moving_mean in param_dict:
cell.moving_mean.set_data(param_dict[darknet_moving_mean].data)
find_param.append(darknet_moving_mean)
else:
not_found_param.append(darknet_moving_mean)
if darknet_moving_variance in param_dict:
cell.moving_variance.set_data(param_dict[darknet_moving_variance].data)
find_param.append(darknet_moving_variance)
else:
not_found_param.append(darknet_moving_variance)
if darknet_gamma in param_dict:
cell.gamma.set_data(param_dict[darknet_gamma].data)
find_param.append(darknet_gamma)
else:
not_found_param.append(darknet_gamma)
if darknet_beta in param_dict:
cell.beta.set_data(param_dict[darknet_beta].data)
find_param.append(darknet_beta)
else:
not_found_param.append(darknet_beta)
args.logger.info('================found_param {}========='.format(len(find_param)))
args.logger.info(find_param)
args.logger.info('================not_found_param {}========='.format(len(not_found_param)))
args.logger.info(not_found_param)
args.logger.info('=====load {} successfully ====='.format(ckpt_path))
load_param_into_net(net, param_dict)
param_not_load = []
for _, param in net.parameters_and_names():
if param.name in param_dict:
pass
else:
param_not_load.append(param.name)
print("not loading param is :", len(param_not_load))
for param_name in param_not_load:
print("param_name not load:", param_name)
return net

@ -218,7 +218,7 @@ def train():
level="O2", keep_batchnorm_fp32=False)
keep_loss_fp32(network)
else:
network = TrainingWrapper(network, opt)
network = TrainingWrapper(network, opt, sens=args.loss_scale)
network.set_train()
if args.rank_save_ckpt_flag:

Loading…
Cancel
Save