|
|
|
@ -239,13 +239,16 @@ class EpistemicUncertaintyModel(Cell):
|
|
|
|
|
def __init__(self, epi_model):
|
|
|
|
|
super(EpistemicUncertaintyModel, self).__init__()
|
|
|
|
|
self.drop_count = 0
|
|
|
|
|
if not self._make_epistemic(epi_model):
|
|
|
|
|
raise ValueError("The model has not Dense Layer or Convolution Layer, "
|
|
|
|
|
"it can not evaluate epistemic uncertainty so far.")
|
|
|
|
|
self.epi_model = self._make_epistemic(epi_model)
|
|
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
|
x = self.epi_model(x)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
def _make_epistemic(self, epi_model, dropout_rate=0.5):
|
|
|
|
|
def _make_epistemic(self, epi_model, keep_prob=0.5):
|
|
|
|
|
"""
|
|
|
|
|
The dropout rate is set to 0.5 by default.
|
|
|
|
|
"""
|
|
|
|
@ -256,13 +259,13 @@ class EpistemicUncertaintyModel(Cell):
|
|
|
|
|
return epi_model
|
|
|
|
|
uncertainty_layer = layer
|
|
|
|
|
uncertainty_name = name
|
|
|
|
|
drop = Dropout(keep_prob=dropout_rate)
|
|
|
|
|
drop = Dropout(keep_prob=keep_prob)
|
|
|
|
|
bnn_drop = SequentialCell([uncertainty_layer, drop])
|
|
|
|
|
setattr(epi_model, uncertainty_name, bnn_drop)
|
|
|
|
|
return epi_model
|
|
|
|
|
self._make_epistemic(layer)
|
|
|
|
|
raise ValueError("The model has not Dense Layer or Convolution Layer, "
|
|
|
|
|
"it can not evaluate epistemic uncertainty so far.")
|
|
|
|
|
if self._make_epistemic(layer):
|
|
|
|
|
return epi_model
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AleatoricUncertaintyModel(Cell):
|
|
|
|
|