|
|
|
@ -20,6 +20,7 @@
|
|
|
|
|
|
|
|
|
|
import copy
|
|
|
|
|
import functools
|
|
|
|
|
import itertools
|
|
|
|
|
import numbers
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
@ -2020,3 +2021,143 @@ class DepthToSpace(PrimitiveWithInfer):
|
|
|
|
|
def infer_dtype(self, x_dtype):
|
|
|
|
|
validator.check_subclass("x_dtype", x_dtype, mstype.tensor)
|
|
|
|
|
return x_dtype
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SpaceToBatch(PrimitiveWithInfer):
|
|
|
|
|
r"""
|
|
|
|
|
Divide spatial dimensions into blocks and combine the block size with the original batch.
|
|
|
|
|
|
|
|
|
|
This operation will divide spatial dimensions (H, W) into blocks with block_size, the output tensor's H and W
|
|
|
|
|
dimension is the corresponding number of blocks after division. The output tensor's batch dimension is the
|
|
|
|
|
product of the original batch and the square of block_size. Prior to division into blocks, the spatial dimensions
|
|
|
|
|
of the input are zero padded according to paddings if necessary.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
block_size (int): The block size of dividing block with value >= 1.
|
|
|
|
|
paddings (list): The padding value for H and W dimension, containing 2 sub list, each containing 2 int value.
|
|
|
|
|
All values must be >= 0. paddings[i] specifies the paddings for spatial dimension i, which corresponds to
|
|
|
|
|
input dimension i+2. It is required that input_shape[i+2]+paddings[i][0]+paddings[i][1] is divisible
|
|
|
|
|
by block_size.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
|
- **input_x** (Tensor) - The input tensor.
|
|
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
|
Tensor, the output tensor with the same type as input. Assume input shape is :math:`(n, c, h, w)` with
|
|
|
|
|
:math:`block\_size` and :math:`padddings`. The output tensor shape will be :math:`(n', c', h', w')`, where
|
|
|
|
|
|
|
|
|
|
:math:`n' = n*(block\_size*block\_size)`
|
|
|
|
|
|
|
|
|
|
:math:`c' = c`
|
|
|
|
|
|
|
|
|
|
:math:`h' = (h+paddings[0][0]+paddings[0][1])//block\_size`
|
|
|
|
|
|
|
|
|
|
:math:`w' = (w+paddings[1][0]+paddings[1][1])//block\_size`
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> block_size = 2
|
|
|
|
|
>>> paddings = [[0, 0], [0, 0]]
|
|
|
|
|
>>> space_to_batch = P.SpaceToBatch(block_size, paddings)
|
|
|
|
|
>>> x = Tensor(np.array([[[[1, 2], [3, 4]]]]), mstype.float32)
|
|
|
|
|
>>> space_to_batch(x)
|
|
|
|
|
[[[[1.]]], [[[2.]]], [[[3.]]], [[[4.]]]]
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
@prim_attr_register
|
|
|
|
|
def __init__(self, block_size, paddings):
|
|
|
|
|
"""Init SpaceToBatch"""
|
|
|
|
|
validator.check_type('block_size', block_size, [int])
|
|
|
|
|
validator.check('block_size', block_size, '', 1, Rel.GT)
|
|
|
|
|
self.block_size = block_size
|
|
|
|
|
validator.check('paddings shape', np.array(paddings).shape, '', (2, 2))
|
|
|
|
|
for elem in itertools.chain(*paddings):
|
|
|
|
|
validator.check_type('paddings element', elem, [int])
|
|
|
|
|
self.paddings = paddings
|
|
|
|
|
|
|
|
|
|
def infer_dtype(self, x_dtype):
|
|
|
|
|
validator.check_subclass("input_x", x_dtype, mstype.tensor)
|
|
|
|
|
validator.check_typename('input_x', x_dtype, mstype.number_type)
|
|
|
|
|
return x_dtype
|
|
|
|
|
|
|
|
|
|
def infer_shape(self, x_shape):
|
|
|
|
|
validator.check('rank of input_x', len(x_shape), '', 4)
|
|
|
|
|
out_shape = copy.deepcopy(x_shape)
|
|
|
|
|
for i in range(2):
|
|
|
|
|
padded = out_shape[i+2] + self.paddings[i][0] + \
|
|
|
|
|
self.paddings[i][1]
|
|
|
|
|
if padded % self.block_size != 0:
|
|
|
|
|
raise ValueError(f'padded[{i}] {padded} should be divisible by '
|
|
|
|
|
f'block_size {self.block_size}')
|
|
|
|
|
out_shape[i+2] = padded // self.block_size
|
|
|
|
|
out_shape[0] *= self.block_size * self.block_size
|
|
|
|
|
return out_shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BatchToSpace(PrimitiveWithInfer):
|
|
|
|
|
r"""
|
|
|
|
|
Divide batch dimension with blocks and interleaves these blocks back into spatial dimensions.
|
|
|
|
|
|
|
|
|
|
This operation will divide batch dimension N into blocks with block_size, the output tensor's N dimension
|
|
|
|
|
is the corresponding number of blocks after division. The output tensor's H, W dimension is product of original H, W
|
|
|
|
|
dimension and block_size with given amount to crop from dimension, respectively.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
block_size (int): The block size of dividing block with value >= 1.
|
|
|
|
|
crops (list): The crop value for H and W dimension, containing 2 sub list, each containing 2 int value.
|
|
|
|
|
All values must be >= 0. crops[i] specifies the crop values for spatial dimension i, which corresponds to
|
|
|
|
|
input dimension i+2. It is required that input_shape[i+2]*block_size >= crops[i][0]+crops[i][1].
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
|
- **input_x** (Tensor) - The input tensor.
|
|
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
|
Tensor, the output tensor with the same type as input. Assume input shape is (n, c, h, w) with block_size
|
|
|
|
|
and crops. The output shape will be (n', c', h', w'), where
|
|
|
|
|
|
|
|
|
|
:math:`n' = n//(block\_size*block\_size)`
|
|
|
|
|
|
|
|
|
|
:math:`c' = c`
|
|
|
|
|
|
|
|
|
|
:math:`h' = h*block\_size-crops[0][0]-crops[0][1]`
|
|
|
|
|
|
|
|
|
|
:math:`w' = w*block\_size-crops[1][0]-crops[1][1]`
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> block_size = 2
|
|
|
|
|
>>> crops = [[0, 0], [0, 0]]
|
|
|
|
|
>>> op = P.BatchToSpace(block_size, crops)
|
|
|
|
|
>>> x = Tensor(np.array([[[[1]]], [[[2]]], [[[3]]], [[[4]]]]), mstype.float32)
|
|
|
|
|
>>> output = op(x)
|
|
|
|
|
[[[[1., 2.], [3., 4.]]]]
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
@prim_attr_register
|
|
|
|
|
def __init__(self, block_size, crops):
|
|
|
|
|
"""Init BatchToSpace"""
|
|
|
|
|
validator.check_type('block_size', block_size, [int])
|
|
|
|
|
validator.check('block_size', block_size, '', 1, Rel.GT)
|
|
|
|
|
self.block_size = block_size
|
|
|
|
|
validator.check('crops shape', np.array(crops).shape, '', (2, 2))
|
|
|
|
|
for elem in itertools.chain(*crops):
|
|
|
|
|
validator.check_type('crops element', elem, [int])
|
|
|
|
|
self.crops = crops
|
|
|
|
|
|
|
|
|
|
def infer_dtype(self, x_dtype):
|
|
|
|
|
validator.check_subclass("input_x", x_dtype, mstype.tensor)
|
|
|
|
|
validator.check_typename('input_x', x_dtype, mstype.number_type)
|
|
|
|
|
return x_dtype
|
|
|
|
|
|
|
|
|
|
def infer_shape(self, x_shape):
|
|
|
|
|
validator.check('rank of input_x', len(x_shape), '', 4)
|
|
|
|
|
out_shape = copy.deepcopy(x_shape)
|
|
|
|
|
for i in range(2):
|
|
|
|
|
x_block_prod = out_shape[i+2] * self.block_size
|
|
|
|
|
crops_sum = self.crops[i][0] + self.crops[i][1]
|
|
|
|
|
validator.check("x block shape prod", x_block_prod, 'crops sum', crops_sum, Rel.GT)
|
|
|
|
|
out_shape[i+2] = x_block_prod - crops_sum
|
|
|
|
|
block_size_prod = self.block_size * self.block_size
|
|
|
|
|
if out_shape[0] % block_size_prod != 0:
|
|
|
|
|
raise ValueError(f'input_x dimension 0 {out_shape[0]} should be divisible by '
|
|
|
|
|
f'block_size_prod {block_size_prod}')
|
|
|
|
|
out_shape[0] = out_shape[0] // block_size_prod
|
|
|
|
|
return out_shape
|
|
|
|
|