add HourNAS model zoo

pull/14129/head
Xinghao Chen 4 years ago
parent ac5371b38f
commit cd31275061

@ -0,0 +1,104 @@
# Contents
- [HourNAS Description](#tinynet-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Environment Requirements](#environment-requirements)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Training Process](#training-process)
- [Evaluation Process](#evaluation-process)
- [Model Description](#model-description)
- [Performance](#performance)
- [Evaluation Performance](#evaluation-performance)
- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
# [HourNAS Description](#contents)
HourNAS is an efficient neural architecture search method. Only using 3 hours (0.1 days) with one GPU, HourNAS can search an architecture that achieves a 77.0% Top-1 accuracy, which outperforms the state-of-the-art methods.
[Paper](https://arxiv.org/abs/2005.14446): Zhaohui Yang, Yunhe Wang, Xinghao Chen, Jianyuan Guo, Wei Zhang, Chao Xu, Chunjing Xu, Dacheng Tao, Chang Xu. HourNAS: Extremely Fast Neural Architecture Search Through an Hourglass Lens. In CVPR 2021.
# [Model architecture](#contents)
The overall network architecture of HourNAS is show below:
[Link](https://arxiv.org/abs/2005.14446)
# [Dataset](#contents)
Dataset used: [CIFAR-10](http://www.cs.toronto.edu/~kriz/cifar.html)
- Dataset size175M60,000 32*32 colorful images in 10 classes
- Train146M50,000 images
- Test29M10,000 images
- Data formatbinary files
- NoteData will be processed in src/dataset.py
# [Environment Requirements](#contents)
- Hardware (GPU)
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Script Description](#contents)
## [Script and Sample Code](#contents)
```markdown
.HourNAS
├── README.md # descriptions about HourNAS
├── src
│ ├── architectures.py # definition of HourNAS-F model
│ ├── dataset.py # data preprocessing
│ ├── hournasnet.py # HourNAS general architecture
│ └── utils.py # utility functions
├── eval.py # evaluation interface
```
### [Training process](#contents)
To Be Done
### [Evaluation Process](#contents)
#### Launch
```bash
# infer example
python eval.py --model hournas_f_c10 --dataset_path [DATA_PATH] --GPU --ckpt [CHECKPOINT_PATH]
```
### Result
```bash
result: {'Top1-Acc': 0.9618389423076923} ckpt= ./hournas_f_cifar10.ckpt
```
# [Model Description](#contents)
## [Performance](#contents)
### Evaluation Performance
| Model | FLOPs (M) | Params (M) | ImageNet Top-1 |
| --------------- | --------- | ---------- | -------------- |
| MnasNet-A1 | 312 | 3.9 | 75.2% |
| HourNAS-E | 313 | 3.8 | 75.7% |
| EfficientNet-B0 | 390 | 5.3 | 76.8% |
| HourNAS-F | 383 | 5.3 | 77.0% |
More details in [Paper](https://arxiv.org/abs/2005.14446).
# [Description of Random Situation](#contents)
We set the seed inside dataset.py.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

@ -0,0 +1,100 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Inference Interface"""
import sys
import argparse
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn import Loss, Top1CategoricalAccuracy, Top5CategoricalAccuracy
from mindspore import context
from mindspore import nn
from src.dataset import create_dataset_cifar10
from src.utils import count_params
from src.hournasnet import hournasnet
from easydict import EasyDict as edict
parser = argparse.ArgumentParser(description='Evaluation')
parser.add_argument('--data_path', type=str, default='/home/workspace/mindspore_dataset/',
metavar='DIR', help='path to dataset')
parser.add_argument('--model', default='hournas_f_c10', type=str, metavar='MODEL',
help='Name of model to train (default: "tinynet_c"')
parser.add_argument('--num-classes', type=int, default=10, metavar='N',
help='number of label classes (default: 10)')
parser.add_argument('-b', '--batch-size', type=int, default=256, metavar='N',
help='input batch size for training (default: 256)')
parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
help='how many training processes to use (default: 4)')
parser.add_argument('--ckpt', type=str, default='./ms_hournas_f_c10.ckpt',
help='model checkpoint to load')
parser.add_argument('--GPU', action='store_true', default=True,
help='Use GPU for training (default: True)')
parser.add_argument('--dataset_sink', action='store_true', default=True)
parser.add_argument('--image-size', type=int, default=32, metavar='N',
help='input image size (default: 32)')
def main():
"""Main entrance for training"""
args = parser.parse_args()
print(sys.argv)
#context.set_context(mode=context.GRAPH_MODE)
context.set_context(mode=context.PYNATIVE_MODE)
if args.GPU:
context.set_context(device_target='GPU')
# parse model argument
assert args.model.startswith(
"hournas"), "Only Tinynet models are supported."
#_, sub_name = args.model.split("_")
net = hournasnet(args.model,
num_classes=args.num_classes,
drop_rate=0.0,
drop_connect_rate=0.0,
global_pool="avg",
bn_tf=False,
bn_momentum=None,
bn_eps=None)
print(net)
print("Total number of parameters:", count_params(net))
cfg = edict({'image_height': args.image_size, 'image_width': args.image_size,})
cfg.batch_size = args.batch_size
print(cfg)
#input_size = net.default_cfg['input_size'][1]
val_data_url = args.data_path #os.path.join(args.data_path, 'val')
val_dataset = create_dataset_cifar10(val_data_url, repeat_num=1, training=False, cifar_cfg=cfg)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
eval_metrics = {'Validation-Loss': Loss(),
'Top1-Acc': Top1CategoricalAccuracy(),
'Top5-Acc': Top5CategoricalAccuracy()}
ckpt = load_checkpoint(args.ckpt)
load_param_into_net(net, ckpt)
net.set_train(False)
model = Model(net, loss, metrics=eval_metrics)
metrics = model.eval(val_dataset, dataset_sink_mode=False)
print(metrics)
if __name__ == '__main__':
main()

@ -0,0 +1,22 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""hub config."""
from src.hournasnet import hournasnet
def create_network(name, *args, **kwargs):
if name == 'HourNAS':
return hournasnet(*args, **kwargs)
raise NotImplementedError(f"{name} is not implemented in the repo")

@ -0,0 +1,55 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Architecture of HourNAS"""
predefine_archs = {
'hournas_f_c10': {
'genotypes': [
#'conv3bnrelu',
'ir_k3_e1_se',
'ir_k5_e6_se', 'ir_k5_e1_se', 'ir_k5_e1_se', 'ir_k3_e1_se',
'ir_k5_e6_se', 'ir_k5_e1_se', 'ir_k3_e1_se', 'ir_k5_e1_se',
'ir_k5_e6_se', 'ir_k3_e6_se', 'ir_k3_e6_se', 'ir_k3_e6_se',
'ir_k5_e6_se', 'ir_k5_e3_se', 'ir_k5_e3_se', 'ir_k5_e3_se',
'ir_k5_e6_se', 'ir_k5_e6_se', 'ir_k3_e6_se', 'ir_k5_e6_se',
'ir_k5_e6_se',
#'conv1', 'adaavgpool'
],
'strides': [
#1,
1,
1, 1, 1, 1,
1, 1, 1, 1,
2, 1, 1, 1,
1, 1, 1, 1,
2, 1, 1, 1,
1,
#1, 1
],
'out_channels': [
#32,
16,
24, 24, 24, 24,
40, 40, 40, 40,
80, 80, 80, 80,
112, 112, 112, 112,
192, 192, 192, 192,
320,
#1280, 1280,
],
'dropout_ratio': 0.2,
'default_init': 'True',
'se_ratio': '0.05'
},
}

@ -0,0 +1,200 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Data operations, will be used in train.py and eval.py"""
import math
import os
import numpy as np
import mindspore.dataset.vision.py_transforms as py_vision
import mindspore.dataset.transforms.py_transforms as py_transforms
import mindspore.dataset.transforms.c_transforms as c_transforms
import mindspore.common.dtype as mstype
import mindspore.dataset as ds
from mindspore.communication.management import get_rank, get_group_size
from mindspore.dataset.vision import Inter
import mindspore.dataset.vision.c_transforms as vision
# values that should remain constant
DEFAULT_CROP_PCT = 0.875
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
# data preprocess configs
SCALE = (0.08, 1.0)
RATIO = (3./4., 4./3.)
ds.config.set_seed(1)
def split_imgs_and_labels(imgs, labels, batchInfo):
"""split data into labels and images"""
ret_imgs = []
ret_labels = []
for i, image in enumerate(imgs):
ret_imgs.append(image)
ret_labels.append(labels[i])
return np.array(ret_imgs), np.array(ret_labels)
def create_dataset(batch_size, train_data_url='', workers=8, distributed=False,
input_size=224, color_jitter=0.4):
"""Create ImageNet training dataset"""
if not os.path.exists(train_data_url):
raise ValueError('Path not exists')
decode_op = py_vision.Decode()
type_cast_op = c_transforms.TypeCast(mstype.int32)
random_resize_crop_bicubic = py_vision.RandomResizedCrop(size=(input_size, input_size),
scale=SCALE, ratio=RATIO,
interpolation=Inter.BICUBIC)
random_horizontal_flip_op = py_vision.RandomHorizontalFlip(0.5)
adjust_range = (max(0, 1 - color_jitter), 1 + color_jitter)
random_color_jitter_op = py_vision.RandomColorAdjust(brightness=adjust_range,
contrast=adjust_range,
saturation=adjust_range)
to_tensor = py_vision.ToTensor()
normalize_op = py_vision.Normalize(
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
# assemble all the transforms
image_ops = py_transforms.Compose([decode_op, random_resize_crop_bicubic,
random_horizontal_flip_op, random_color_jitter_op, to_tensor, normalize_op])
rank_id = get_rank() if distributed else 0
rank_size = get_group_size() if distributed else 1
dataset_train = ds.ImageFolderDataset(train_data_url,
num_parallel_workers=workers,
shuffle=True,
num_shards=rank_size,
shard_id=rank_id)
dataset_train = dataset_train.map(input_columns=["image"],
operations=image_ops,
num_parallel_workers=workers)
dataset_train = dataset_train.map(input_columns=["label"],
operations=type_cast_op,
num_parallel_workers=workers)
# batch dealing
ds_train = dataset_train.batch(batch_size,
per_batch_map=split_imgs_and_labels,
input_columns=["image", "label"],
num_parallel_workers=2,
drop_remainder=True)
ds_train = ds_train.repeat(1)
return ds_train
def create_dataset_val(batch_size=128, val_data_url='', workers=8, distributed=False,
input_size=224):
"""Create ImageNet validation dataset"""
if not os.path.exists(val_data_url):
raise ValueError('Path not exists')
rank_id = get_rank() if distributed else 0
rank_size = get_group_size() if distributed else 1
dataset = ds.ImageFolderDataset(val_data_url, num_parallel_workers=workers,
num_shards=rank_size, shard_id=rank_id)
scale_size = None
if isinstance(input_size, tuple):
assert len(input_size) == 2
if input_size[-1] == input_size[-2]:
scale_size = int(math.floor(input_size[0] / DEFAULT_CROP_PCT))
else:
scale_size = tuple([int(x / DEFAULT_CROP_PCT) for x in input_size])
else:
scale_size = int(math.floor(input_size / DEFAULT_CROP_PCT))
type_cast_op = c_transforms.TypeCast(mstype.int32)
decode_op = py_vision.Decode()
resize_op = py_vision.Resize(size=scale_size, interpolation=Inter.BICUBIC)
center_crop = py_vision.CenterCrop(size=input_size)
to_tensor = py_vision.ToTensor()
normalize_op = py_vision.Normalize(
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
image_ops = py_transforms.Compose([decode_op, resize_op, center_crop,
to_tensor, normalize_op])
dataset = dataset.map(input_columns=["label"], operations=type_cast_op,
num_parallel_workers=workers)
dataset = dataset.map(input_columns=["image"], operations=image_ops,
num_parallel_workers=workers)
dataset = dataset.batch(batch_size, per_batch_map=split_imgs_and_labels,
input_columns=["image", "label"],
num_parallel_workers=2,
drop_remainder=True)
dataset = dataset.repeat(1)
return dataset
def _get_rank_info():
"""
get rank size and rank id
"""
rank_size = int(os.environ.get("RANK_SIZE", 1))
if rank_size > 1:
rank_size = get_group_size()
rank_id = get_rank()
else:
rank_size = rank_id = None
return rank_size, rank_id
def create_dataset_cifar10(data_home, repeat_num=1, training=True, cifar_cfg=None):
"""Data operations."""
data_dir = os.path.join(data_home, "cifar-10-batches-bin")
if not training:
data_dir = os.path.join(data_home, "cifar-10-verify-bin")
rank_size, rank_id = _get_rank_info()
if training:
data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, shuffle=True)
else:
data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id, shuffle=False)
resize_height = cifar_cfg.image_height
resize_width = cifar_cfg.image_width
# define map operations
random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
random_horizontal_op = vision.RandomHorizontalFlip()
resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
rescale_op = vision.Rescale(1.0 / 255.0, 0.0)
#normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.24703233, 0.24348505, 0.26158768))
changeswap_op = vision.HWC2CHW()
type_cast_op = c_transforms.TypeCast(mstype.int32)
c_trans = []
if training:
c_trans = [random_crop_op, random_horizontal_op]
c_trans += [resize_op, rescale_op, normalize_op, changeswap_op]
# apply map operations on images
data_set = data_set.map(operations=type_cast_op, input_columns="label")
data_set = data_set.map(operations=c_trans, input_columns="image")
# apply batch operations
data_set = data_set.batch(batch_size=cifar_cfg.batch_size, drop_remainder=True)
# apply repeat operations
data_set = data_set.repeat(repeat_num)
return data_set

File diff suppressed because it is too large Load Diff

@ -0,0 +1,89 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""model utils"""
import math
import argparse
import numpy as np
def str2bool(value):
"""Convert string arguments to bool type"""
if value.lower() in ('yes', 'true', 't', 'y', '1'):
return True
if value.lower() in ('no', 'false', 'f', 'n', '0'):
return False
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_lr(base_lr, total_epochs, steps_per_epoch, decay_epochs=1, decay_rate=0.9,
warmup_epochs=0., warmup_lr_init=0., global_epoch=0):
"""Get scheduled learning rate"""
lr_each_step = []
total_steps = steps_per_epoch * total_epochs
global_steps = steps_per_epoch * global_epoch
self_warmup_delta = ((base_lr - warmup_lr_init) / \
warmup_epochs) if warmup_epochs > 0 else 0
self_decay_rate = decay_rate if decay_rate < 1 else 1/decay_rate
for i in range(total_steps):
epochs = math.floor(i/steps_per_epoch)
cond = 1 if (epochs < warmup_epochs) else 0
warmup_lr = warmup_lr_init + epochs * self_warmup_delta
decay_nums = math.floor(epochs / decay_epochs)
decay_rate = math.pow(self_decay_rate, decay_nums)
decay_lr = base_lr * decay_rate
lr = cond * warmup_lr + (1 - cond) * decay_lr
lr_each_step.append(lr)
lr_each_step = lr_each_step[global_steps:]
lr_each_step = np.array(lr_each_step).astype(np.float32)
return lr_each_step
def add_weight_decay(net, weight_decay=1e-5, skip_list=None):
"""Apply weight decay to only conv and dense layers (len(shape) > =2)
Args:
net (mindspore.nn.Cell): Mindspore network instance
weight_decay (float): weight decay tobe used.
skip_list (tuple): list of parameter names without weight decay
Returns:
A list of group of parameters, separated by different weight decay.
"""
decay = []
no_decay = []
if not skip_list:
skip_list = ()
for param in net.trainable_params():
if len(param.shape) == 1 or \
param.name.endswith(".bias") or \
param.name in skip_list:
no_decay.append(param)
else:
decay.append(param)
return [
{'params': no_decay, 'weight_decay': 0.},
{'params': decay, 'weight_decay': weight_decay}]
def count_params(net):
"""Count number of parameters in the network
Args:
net (mindspore.nn.Cell): Mindspore network instance
Returns:
total_params (int): Total number of trainable params
"""
total_params = 0
for param in net.trainable_params():
total_params += np.prod(param.shape)
return total_params
Loading…
Cancel
Save