|
|
|
@ -50,12 +50,34 @@ class Net2(Cell):
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Net3(Cell):
|
|
|
|
|
def __init__(self, weight, weight2, weight3, strategy1=None, strategy2=None, is_parameter=True):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.concat = P.Concat(axis=0).set_strategy(strategy1)
|
|
|
|
|
if is_parameter:
|
|
|
|
|
self.weight = Parameter(weight, "w1")
|
|
|
|
|
else:
|
|
|
|
|
self.weight = weight
|
|
|
|
|
self.mul = P.Mul().set_strategy(strategy2)
|
|
|
|
|
self.weight2 = Parameter(weight2, "w2")
|
|
|
|
|
self.weight3 = Parameter(weight3, "w3")
|
|
|
|
|
|
|
|
|
|
def construct(self, x, b):
|
|
|
|
|
out = self.concat((self.weight, self.weight2, self.weight3))
|
|
|
|
|
out = self.mul(x, out)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
|
|
|
|
_w1 = Tensor(np.ones([96, 64, 32]), dtype=ms.float32)
|
|
|
|
|
_w2 = Tensor(np.ones([32, 64, 32]), dtype=ms.float32)
|
|
|
|
|
_w3 = Tensor(np.ones([128, 16, 32]), dtype=ms.float32)
|
|
|
|
|
_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
|
|
|
|
|
|
|
|
|
w1 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32)
|
|
|
|
|
w2 = Tensor(np.ones([16, 64, 32]), dtype=ms.float32)
|
|
|
|
|
w3 = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def compile_net(net):
|
|
|
|
|
context.set_context(save_graphs=True)
|
|
|
|
@ -126,3 +148,9 @@ def test_concat_auto_parallel2():
|
|
|
|
|
strategy2 = None
|
|
|
|
|
net = Net2(_w3, strategy1, strategy2, axis=1)
|
|
|
|
|
compile_net(net)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_concat_auto_parallel_3_tensor():
|
|
|
|
|
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
|
|
|
|
|
net = Net3(w1, w2, w3)
|
|
|
|
|
compile_net(net)
|
|
|
|
|