|
|
|
@ -12,51 +12,43 @@
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
# ============================================================================
|
|
|
|
|
"""Convert ckpt to air."""
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
from mindspore import context
|
|
|
|
|
from mindspore import Tensor
|
|
|
|
|
from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
|
|
|
|
|
import mindspore
|
|
|
|
|
from mindspore import context, Tensor
|
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
|
|
|
|
|
|
|
|
|
from src.centerface import CenterfaceMobilev2
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
|
|
|
|
|
|
|
|
|
|
def save_air():
|
|
|
|
|
"""Save air file"""
|
|
|
|
|
print('============= centerface start save air ==================')
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='Convert ckpt to air')
|
|
|
|
|
parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load')
|
|
|
|
|
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
|
|
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
network = CenterfaceMobilev2()
|
|
|
|
|
|
|
|
|
|
if os.path.isfile(args.pretrained):
|
|
|
|
|
param_dict = load_checkpoint(args.pretrained)
|
|
|
|
|
param_dict_new = {}
|
|
|
|
|
for key, values in param_dict.items():
|
|
|
|
|
if key.startswith('moments.') or key.startswith('moment1.') or key.startswith('moment2.'):
|
|
|
|
|
continue
|
|
|
|
|
elif key.startswith('centerface_network.'):
|
|
|
|
|
param_dict_new[key[19:]] = values
|
|
|
|
|
else:
|
|
|
|
|
param_dict_new[key] = values
|
|
|
|
|
load_param_into_net(network, param_dict_new)
|
|
|
|
|
print('load model {} success'.format(args.pretrained))
|
|
|
|
|
|
|
|
|
|
input_data = np.random.uniform(low=0, high=1.0, size=(args.batch_size, 3, 832, 832)).astype(np.float32)
|
|
|
|
|
|
|
|
|
|
tensor_input_data = Tensor(input_data)
|
|
|
|
|
export(network, tensor_input_data,
|
|
|
|
|
file_name=args.pretrained.replace('.ckpt', '_' + str(args.batch_size) + 'b.air'), file_format='AIR')
|
|
|
|
|
|
|
|
|
|
print("export model success.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
save_air()
|
|
|
|
|
from src.config import ConfigCenterface
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='centerface export')
|
|
|
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
|
|
|
|
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
|
|
|
|
|
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
|
|
|
|
|
parser.add_argument("--file_name", type=str, default="centerface.air", help="output file name.")
|
|
|
|
|
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id)
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
config = ConfigCenterface()
|
|
|
|
|
net = CenterfaceMobilev2()
|
|
|
|
|
|
|
|
|
|
param_dict = load_checkpoint(args.ckpt_file)
|
|
|
|
|
param_dict_new = {}
|
|
|
|
|
for key, values in param_dict.items():
|
|
|
|
|
if key.startswith('moments.') or key.startswith('moment1.') or key.startswith('moment2.'):
|
|
|
|
|
continue
|
|
|
|
|
elif key.startswith('centerface_network.'):
|
|
|
|
|
param_dict_new[key[19:]] = values
|
|
|
|
|
else:
|
|
|
|
|
param_dict_new[key] = values
|
|
|
|
|
|
|
|
|
|
load_param_into_net(net, param_dict_new)
|
|
|
|
|
net.set_train(False)
|
|
|
|
|
|
|
|
|
|
input_data = Tensor(np.zeros([args.batch_size, 3, config.input_h, config.input_w]), mindspore.float32)
|
|
|
|
|
export(net, input_data, file_name=args.file_name, file_format=args.file_format)
|
|
|
|
|