add CPU operators: Div/Mod/Minimum/Floor/ArgMinWithValue

pull/10452/head
shibeiji 4 years ago
parent 724ded7ad2
commit d043eeb834

@ -0,0 +1,105 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/argmin_with_value_cpu_kernel.h"
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
namespace {
size_t get_element_num(const std::vector<size_t> &shape) {
size_t size = 1;
for (size_t i = 0; i < shape.size(); i++) {
size *= shape[i];
}
return size;
}
template <typename T>
bool check_validation(const std::vector<size_t> &shape, const size_t num_before_axis, const size_t num_after_axis,
const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs) {
if (inputs.size() != 1 || outputs.size() != 2) {
MS_LOG(EXCEPTION) << "Wrong number of inputs or outputs!";
return false;
}
size_t data_size = sizeof(T);
size_t input_size = get_element_num(shape) * data_size;
size_t output_num = num_before_axis * num_after_axis;
size_t out0_size = output_num * sizeof(int);
size_t out1_size = output_num * data_size;
if (inputs[0]->size != input_size || outputs[0]->size != out0_size || outputs[1]->size != out1_size) {
MS_LOG(EXCEPTION) << "invalid input or output data size!";
return false;
}
return true;
}
} // namespace
template <typename T>
void ArgMinWithValueCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
size_t shape_len = shape_.size();
int64_t axis = AnfAlgo::GetNodeAttr<int64_t>(kernel_node, AXIS);
axis += shape_len;
if (axis < 0) {
MS_LOG(EXCEPTION) << "Invalid axis:" << axis << ", should in range [-1, " << shape_len - 1 << "]";
}
axis = axis % static_cast<int64_t>(shape_len);
num_before_axis_ = 1;
num_after_axis_ = 1;
for (size_t i = 0; i < shape_len; i++) {
if (static_cast<int64_t>(i) < axis) {
num_before_axis_ *= shape_[i];
} else if (static_cast<int64_t>(i) > axis) {
num_after_axis_ *= shape_[i];
}
}
dim_axis_ = shape_[axis];
}
template <typename T>
bool ArgMinWithValueCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspaces*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (!check_validation<T>(shape_, num_before_axis_, num_after_axis_, inputs, outputs)) {
return false;
}
auto input = reinterpret_cast<T *>(inputs[0]->addr);
auto output0 = reinterpret_cast<int32_t *>(outputs[0]->addr);
auto output1 = reinterpret_cast<T *>(outputs[1]->addr);
for (size_t i = 0; i < num_before_axis_; i++) {
size_t src_index_i = i * dim_axis_ * num_after_axis_;
for (size_t j = 0; j < num_after_axis_; j++) {
std::vector<float> array_axis;
size_t src_index_j = src_index_i + j;
for (size_t k = 0; k < dim_axis_; k++) {
size_t src_index_k = k * num_after_axis_ + src_index_j;
array_axis.push_back(static_cast<float>(input[src_index_k]));
}
auto min_ops = std::min_element(array_axis.begin(), array_axis.end());
auto min_index = static_cast<int32_t>(std::distance(array_axis.begin(), min_ops));
auto dst_index = i * num_after_axis_ + j;
output0[dst_index] = min_index;
auto src_index = IntToSize(min_index) * num_after_axis_ + src_index_j;
output1[dst_index] = input[src_index];
}
}
return true;
}
} // namespace kernel
} // namespace mindspore

@ -0,0 +1,56 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ARGMINWITHVALUE_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ARGMINWITHVALUE_CPU_KERNEL_H_
#include <vector>
#include <map>
#include <memory>
#include <algorithm>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename T>
class ArgMinWithValueCPUKernel : public CPUKernel {
public:
ArgMinWithValueCPUKernel() = default;
~ArgMinWithValueCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
std::vector<size_t> shape_;
size_t num_before_axis_;
size_t num_after_axis_;
size_t dim_axis_;
};
MS_REG_CPU_KERNEL_T(
ArgMinWithValue,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
ArgMinWithValueCPUKernel, float);
MS_REG_CPU_KERNEL_T(
ArgMinWithValue,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat16),
ArgMinWithValueCPUKernel, float16);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ARGMINWITHVALUE_CPU_KERNEL_H_

@ -79,6 +79,46 @@ void ArithmeticCPUKernel::RealDiv(const T *input1, const T *input2, T *out, size
}
}
template <typename T>
void ArithmeticCPUKernel::Div(const T *input1, const T *input2, T *out, size_t start, size_t end) {
for (size_t i = start; i < end; i++) {
std::vector<size_t> idx;
GenIndex(i, &idx);
auto dividend = input1[idx[0]];
auto divisor = input2[idx[1]];
if (divisor == 0) {
if (dividend == 0) {
out[i] = std::numeric_limits<T>::quiet_NaN();
continue;
}
if (std::numeric_limits<T>::has_infinity) {
out[i] = dividend > 0 ? std::numeric_limits<T>::infinity() : -std::numeric_limits<T>::infinity();
} else {
out[i] = dividend > 0 ? std::numeric_limits<T>::max() : std::numeric_limits<T>::min();
}
continue;
}
out[i] = dividend / divisor;
}
}
template <typename T>
void ArithmeticCPUKernel::Mod(const T *input1, const T *input2, T *out, size_t start, size_t end) {
for (size_t i = start; i < end; i++) {
std::vector<size_t> idx;
GenIndex(i, &idx);
auto x = static_cast<double>(input1[idx[0]]);
auto y = static_cast<double>(input2[idx[1]]);
auto data_div = x / y;
auto data_div_min = data_div < 0.0 ? data_div : 0.0;
auto data_div_max = data_div > 0.0 ? data_div : 0.0;
auto data_div_max_floor = floor(data_div_max);
auto data_div_min_ceil = ceil(data_div_min);
auto data_div_res = data_div_max_floor + data_div_min_ceil;
out[i] = static_cast<T>(x - data_div_res * y);
}
}
template <typename T>
void ArithmeticCPUKernel::Pow(const T *input1, const T *input2, T *out, size_t start, size_t end) {
for (size_t i = start; i < end; i++) {
@ -128,6 +168,10 @@ void ArithmeticCPUKernel::InitKernel(const CNodePtr &kernel_node) {
operate_type_ = MUL;
} else if (kernel_name == prim::kPrimRealDiv->name()) {
operate_type_ = REALDIV;
} else if (kernel_name == prim::kPrimDiv->name()) {
operate_type_ = DIV;
} else if (kernel_name == prim::kPrimMod->name()) {
operate_type_ = MOD;
} else if (kernel_name == prim::kPrimPow->name()) {
operate_type_ = POW;
} else if (kernel_name == prim::kPrimLess->name()) {
@ -291,6 +335,10 @@ void ArithmeticCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, co
threads.emplace_back(std::thread(&ArithmeticCPUKernel::Mul<T>, this, input1, input2, output, start, end));
} else if (operate_type_ == REALDIV) {
threads.emplace_back(std::thread(&ArithmeticCPUKernel::RealDiv<T>, this, input1, input2, output, start, end));
} else if (operate_type_ == DIV) {
threads.emplace_back(std::thread(&ArithmeticCPUKernel::Div<T>, this, input1, input2, output, start, end));
} else if (operate_type_ == MOD) {
threads.emplace_back(std::thread(&ArithmeticCPUKernel::Mod<T>, this, input1, input2, output, start, end));
} else if (operate_type_ == POW) {
threads.emplace_back(std::thread(&ArithmeticCPUKernel::Pow<T>, this, input1, input2, output, start, end));
} else if (operate_type_ == ASSIGNADD) {

@ -48,6 +48,10 @@ class ArithmeticCPUKernel : public CPUKernel {
template <typename T>
void RealDiv(const T *input1, const T *input2, T *out, size_t start, size_t end);
template <typename T>
void Div(const T *input1, const T *input2, T *out, size_t start, size_t end);
template <typename T>
void Mod(const T *input1, const T *input2, T *out, size_t start, size_t end);
template <typename T>
void Pow(const T *input1, const T *input2, T *out, size_t start, size_t end);
template <typename T>
void AssignAdd(T *input1, const T *input2, T *out, size_t start, size_t end);
@ -96,6 +100,24 @@ MS_REG_CPU_KERNEL(
MS_REG_CPU_KERNEL(
RealDiv, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
ArithmeticCPUKernel);
MS_REG_CPU_KERNEL(
Div, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
ArithmeticCPUKernel);
MS_REG_CPU_KERNEL(
Div, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
ArithmeticCPUKernel);
MS_REG_CPU_KERNEL(
Div, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ArithmeticCPUKernel);
MS_REG_CPU_KERNEL(
Mod, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
ArithmeticCPUKernel);
MS_REG_CPU_KERNEL(
Mod, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ArithmeticCPUKernel);
MS_REG_CPU_KERNEL(
Mod, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
ArithmeticCPUKernel);
MS_REG_CPU_KERNEL(
Less, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeBool),
ArithmeticCPUKernel);

@ -62,6 +62,13 @@ void ZerosLike(const T *in, T *out, size_t start, size_t end) {
out[i] = static_cast<T>(0);
}
}
template <typename T>
void Floor(const T *in, T *out, size_t start, size_t end) {
for (size_t i = start; i < end; i++) {
out[i] = static_cast<T>(floor(in[i]));
}
}
} // namespace
void ArithmeticSelfCPUKernel::InitKernel(const CNodePtr &kernel_node) {
@ -77,6 +84,8 @@ void ArithmeticSelfCPUKernel::InitKernel(const CNodePtr &kernel_node) {
operate_type_ = NEG;
} else if (kernel_name == prim::kPrimSign->name()) {
operate_type_ = SIGN;
} else if (kernel_name == prim::kPrimFloor->name()) {
operate_type_ = FLOOR;
}
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
@ -128,6 +137,8 @@ void ArithmeticSelfCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs
threads.emplace_back(std::thread(ZerosLike<T>, input, output, start, end));
} else if (operate_type_ == SIGN) {
threads.emplace_back(std::thread(Sign<T>, input, output, start, end));
} else if (operate_type_ == FLOOR) {
threads.emplace_back(std::thread(Floor<T>, input, output, start, end));
}
start += once_compute_size;
}

@ -58,6 +58,8 @@ MS_REG_CPU_KERNEL(Sign, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputA
ArithmeticSelfCPUKernel);
MS_REG_CPU_KERNEL(Sign, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
ArithmeticSelfCPUKernel);
MS_REG_CPU_KERNEL(Floor, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ArithmeticSelfCPUKernel);
} // namespace kernel
} // namespace mindspore

@ -63,6 +63,7 @@ enum OperateType {
SQRT,
POW,
REALDIV,
MOD,
NEG,
LESS,
ASSIGNADD,
@ -77,6 +78,7 @@ enum OperateType {
SIGN,
EQUAL,
NOTEQUAL,
FLOOR,
};
class CPUKernel : public kernel::KernelMod {

@ -0,0 +1,221 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/minimum_cpu_kernel.h"
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
template <typename T>
void MinimumCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
input_x_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
input_y_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
output_shape_ = AnfAlgo::GetOutputDeviceShape(kernel_node, 0);
TypeId input_x_dtype = AnfAlgo::GetInputDeviceDataType(kernel_node, 0);
TypeId input_y_dtype = AnfAlgo::GetInputDeviceDataType(kernel_node, 1);
size_t max_input_shape_size =
input_x_shape_.size() > input_y_shape_.size() ? input_x_shape_.size() : input_y_shape_.size();
for (size_t i = 0; i < output_shape_.size(); i++) {
output_num_ *= output_shape_[i];
}
if ((input_x_shape_.size() == 0 && input_y_shape_.size() != 0) ||
(input_x_shape_.size() != 0 && input_y_shape_.size() == 0)) {
InitInputTensorAndScalar(max_input_shape_size);
} else if (max_input_shape_size == output_shape_.size() && output_shape_.size() != 0) {
InitInputTensors(input_x_dtype, input_y_dtype);
} else {
MS_LOG(EXCEPTION) << "Only support input two tensors or one tensor and one scalar";
}
}
template <typename T>
void MinimumCPUKernel<T>::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but MinimumCPUKernel needs 2 input.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but MinimumCPUKernel needs 1 output.";
}
}
template <typename T>
void MinimumCPUKernel<T>::InitInputTensorAndScalar(size_t max_input_shape_size) {
if (max_input_shape_size != output_shape_.size()) {
MS_LOG(EXCEPTION) << "Output tensor size must be equal to the max shape size of inputs";
}
need_broadcast_ = false;
}
template <typename T>
void MinimumCPUKernel<T>::InitInputTensors(TypeId input_x_dtype, TypeId input_y_dtype) {
if (input_x_dtype == kNumberTypeBool && input_y_dtype == kNumberTypeBool) {
MS_LOG(EXCEPTION) << "Input tensor types cannot be both bool";
}
// Check if the shape needs to be broadcast
need_broadcast_ = IsBroadcast();
if (need_broadcast_) {
InitTensorBroadcastShape();
}
}
template <typename T>
bool MinimumCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
T *input_x_ = reinterpret_cast<T *>(inputs[0]->addr);
T *input_y_ = reinterpret_cast<T *>(inputs[1]->addr);
T *output_ = reinterpret_cast<T *>(outputs[0]->addr);
BroadcastArith(input_x_, input_y_, output_);
return true;
}
template <typename T>
void MinimumCPUKernel<T>::BroadcastArith(const T *input_x, const T *input_y, T *output) {
MS_EXCEPTION_IF_NULL(input_x);
MS_EXCEPTION_IF_NULL(input_y);
MS_EXCEPTION_IF_NULL(output);
if (need_broadcast_) {
BroadcastArithKernel(broadcast_input_x_shape_[0], broadcast_input_x_shape_[1], broadcast_input_x_shape_[2],
broadcast_input_x_shape_[3], broadcast_input_x_shape_[4], broadcast_input_x_shape_[5],
broadcast_input_x_shape_[6], broadcast_input_y_shape_[0], broadcast_input_y_shape_[1],
broadcast_input_y_shape_[2], broadcast_input_y_shape_[3], broadcast_input_y_shape_[4],
broadcast_input_y_shape_[5], broadcast_input_y_shape_[6], broadcast_output_shape_[0],
broadcast_output_shape_[1], broadcast_output_shape_[2], broadcast_output_shape_[3],
broadcast_output_shape_[4], broadcast_output_shape_[5], broadcast_output_shape_[6], input_x,
input_y, output);
} else {
if (input_x_shape_.size() == 0 || input_y_shape_.size() == 0) {
BroadcastArithOneScalarOneTensor(input_x, input_y, output);
} else {
BroadcastArithTensors(input_x, input_y, output);
}
}
}
template <typename T>
bool MinimumCPUKernel<T>::IsBroadcast() {
if (input_x_shape_.size() != input_y_shape_.size()) {
return true;
}
for (size_t i = 0; i < input_x_shape_.size(); i++) {
if (input_x_shape_[i] != input_y_shape_[i]) {
return true;
}
}
return false;
}
template <typename T>
void MinimumCPUKernel<T>::InitTensorBroadcastShape() {
if (output_shape_.size() > max_dims) {
MS_LOG(EXCEPTION) << "Broadcast operation not support dim greater than 7";
}
broadcast_input_x_shape_.resize(max_dims, 1);
broadcast_input_y_shape_.resize(max_dims, 1);
broadcast_output_shape_.resize(max_dims, 1);
for (size_t i = 0; i < output_shape_.size(); i++) {
broadcast_output_shape_[i] = output_shape_[i];
}
int input_x_dim_offset = output_shape_.size() - input_x_shape_.size();
for (size_t j = 0; j < input_x_shape_.size(); j++) {
broadcast_input_x_shape_[j + input_x_dim_offset] = input_x_shape_[j];
input_x_num_ *= input_x_shape_[j];
}
int input_y_dim_offset = output_shape_.size() - input_y_shape_.size();
for (size_t k = 0; k < input_y_shape_.size(); k++) {
if (need_broadcast_) {
broadcast_input_y_shape_[k + input_y_dim_offset] = input_y_shape_[k];
input_y_num_ *= input_y_shape_[k];
}
}
}
// Broadcast comparation
template <typename T>
size_t MinimumCPUKernel<T>::Index(const size_t &index, const size_t &dim) {
return dim == 1 ? 0 : index;
}
// Broadcast Arithmetic
template <typename T>
void MinimumCPUKernel<T>::BroadcastArithKernel(const size_t l0, const size_t l1, const size_t l2, const size_t l3,
const size_t l4, const size_t l5, const size_t l6, const size_t r0,
const size_t r1, const size_t r2, const size_t r3, const size_t r4,
const size_t r5, const size_t r6, const size_t d0, const size_t d1,
const size_t d2, const size_t d3, const size_t d4, const size_t d5,
const size_t d6, const T *input_x, const T *input_y, T *output) {
MS_EXCEPTION_IF_NULL(input_x);
MS_EXCEPTION_IF_NULL(input_y);
MS_EXCEPTION_IF_NULL(output);
for (size_t pos = 0; pos < output_num_; pos++) {
size_t i = pos / (d1 * d2 * d3 * d4 * d5 * d6) % d0;
size_t j = pos / (d2 * d3 * d4 * d5 * d6) % d1;
size_t k = pos / (d3 * d4 * d5 * d6) % d2;
size_t l = pos / (d4 * d5 * d6) % d3;
size_t m = pos / (d5 * d6) % d4;
size_t n = pos / d6 % d5;
size_t o = pos % d6;
size_t l_index = Index(i, l0) * l1 * l2 * l3 * l4 * l5 * l6;
l_index += Index(j, l1) * l2 * l3 * l4 * l5 * l6;
l_index += Index(k, l2) * l3 * l4 * l5 * l6;
l_index += Index(l, l3) * l4 * l5 * l6;
l_index += Index(m, l4) * l5 * l6;
l_index += Index(n, l5) * l6;
l_index += Index(o, l6);
size_t r_index = Index(i, r0) * r1 * r2 * r3 * r4 * r5 * r6;
r_index += Index(j, r1) * r2 * r3 * r4 * r5 * r6;
r_index += Index(k, r2) * r3 * r4 * r5 * r6;
r_index += Index(l, r3) * r4 * r5 * r6;
r_index += Index(m, r4) * r5 * r6;
r_index += Index(n, r5) * r6;
r_index += Index(o, r6);
output[pos] = MinimumFunc(input_x[l_index], input_y[r_index]);
}
}
template <typename T>
void MinimumCPUKernel<T>::BroadcastArithOneScalarOneTensor(const T *input_x, const T *input_y, T *output) {
MS_EXCEPTION_IF_NULL(input_x);
MS_EXCEPTION_IF_NULL(input_y);
MS_EXCEPTION_IF_NULL(output);
if (input_x_shape_.size() == 0) {
for (size_t i = 0; i < output_num_; ++i) {
output[i] = MinimumFunc(input_x[0], input_y[i]);
}
} else {
for (size_t i = 0; i < output_num_; ++i) {
output[i] = MinimumFunc(input_x[i], input_y[0]);
}
}
}
template <typename T>
void MinimumCPUKernel<T>::BroadcastArithTensors(const T *input_x, const T *input_y, T *output) {
MS_EXCEPTION_IF_NULL(input_x);
MS_EXCEPTION_IF_NULL(input_y);
MS_EXCEPTION_IF_NULL(output);
for (size_t i = 0; i < output_num_; ++i) {
output[i] = MinimumFunc(input_x[i], input_y[i]);
}
}
} // namespace kernel
} // namespace mindspore

@ -0,0 +1,108 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MINIMUM_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MINIMUM_CPU_KERNEL_H_
#include <vector>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename T>
class MinimumCPUKernel : public CPUKernel {
public:
MinimumCPUKernel() = default;
~MinimumCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
void CheckParam(const CNodePtr &kernel_node);
bool IsBroadcast();
size_t Index(const size_t &index, const size_t &dim);
void InitTensorBroadcastShape();
void InitInputTensorAndScalar(size_t max_input_shape_size);
void InitInputTensors(TypeId input_x_dtype, TypeId input_y_dtype);
// Broadcast Arithmetic
void BroadcastArithKernel(const size_t l0, const size_t l1, const size_t l2, const size_t l3, const size_t l4,
const size_t l5, const size_t l6, const size_t r0, const size_t r1, const size_t r2,
const size_t r3, const size_t r4, const size_t r5, const size_t r6, const size_t d0,
const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t d5,
const size_t d6, const T *input_x, const T *input_y, T *output);
T MinimumFunc(const T &lhs, const T &rhs) { return lhs < rhs ? lhs : rhs; }
void BroadcastArithOneScalarOneTensor(const T *input_x, const T *input_y, T *output);
void BroadcastArithTensors(const T *input_x, const T *input_y, T *output);
void BroadcastArith(const T *input_x, const T *input_y, T *output);
private:
bool need_broadcast_{false};
size_t input_x_num_{1};
size_t input_y_num_{1};
size_t output_num_{1};
std::vector<size_t> input_x_shape_;
std::vector<size_t> input_y_shape_;
std::vector<size_t> output_shape_;
std::vector<size_t> broadcast_input_x_shape_;
std::vector<size_t> broadcast_input_y_shape_;
std::vector<size_t> broadcast_output_shape_;
const size_t max_dims{7};
};
MS_REG_CPU_KERNEL_T(
Minimum, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
MinimumCPUKernel, int32_t);
MS_REG_CPU_KERNEL_T(
Minimum,
KernelAttr().AddInputAttr(kNumberTypeUInt32).AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeUInt32),
MinimumCPUKernel, uint32_t);
MS_REG_CPU_KERNEL_T(
Minimum,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
MinimumCPUKernel, float);
MS_REG_CPU_KERNEL_T(
Minimum, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
MinimumCPUKernel, int64_t);
MS_REG_CPU_KERNEL_T(
Minimum,
KernelAttr().AddInputAttr(kNumberTypeUInt64).AddInputAttr(kNumberTypeUInt64).AddOutputAttr(kNumberTypeUInt64),
MinimumCPUKernel, uint64_t);
MS_REG_CPU_KERNEL_T(
Minimum,
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
MinimumCPUKernel, double);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UPDATE_CACHE_CPU_KERNEL_H_

@ -243,6 +243,8 @@ inline const PrimitivePtr kPrimNeg = std::make_shared<Primitive>("Neg");
inline const PrimitivePtr kPrimSub = std::make_shared<Primitive>("Sub");
inline const PrimitivePtr kPrimMul = std::make_shared<Primitive>("Mul");
inline const PrimitivePtr kPrimDiv = std::make_shared<Primitive>("Div");
inline const PrimitivePtr kPrimMod = std::make_shared<Primitive>("Mod");
inline const PrimitivePtr kPrimFloor = std::make_shared<Primitive>("Floor");
inline const PrimitivePtr kPrimDivNoNan = std::make_shared<Primitive>("DivNoNan");
inline const PrimitivePtr kPrimMinimum = std::make_shared<Primitive>("Minimum");
inline const PrimitivePtr kPrimMaximum = std::make_shared<Primitive>("Maximum");

@ -1708,7 +1708,7 @@ class ArgMinWithValue(PrimitiveWithInfer):
- output_x (Tensor) - The minimum value of input tensor, with the same shape as index.
Supported Platforms:
``Ascend``
``Ascend`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)

@ -1833,7 +1833,7 @@ class Minimum(_MathBinaryOp):
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
@ -1963,7 +1963,7 @@ class Div(_MathBinaryOp):
and the data type is the one with higher precision or higher digits among the two inputs.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32)
@ -2158,7 +2158,7 @@ class Mod(_MathBinaryOp):
ValueError: When `input_x` and `input_y` are not the same dtype.
Supported Platforms:
``Ascend``
``Ascend`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32)
@ -2188,7 +2188,7 @@ class Floor(PrimitiveWithInfer):
Tensor, has the same shape as `input_x`.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32)

@ -0,0 +1,139 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class NetArgminWithValue(nn.Cell):
def __init__(self, axis=0, keep_dims=False):
super(NetArgminWithValue, self).__init__()
self.argmin = P.ArgMinWithValue(axis=axis, keep_dims=keep_dims)
def construct(self, x):
return self.argmin(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_argminwithvalue_fp32():
x = np.array([[1., 20., 5.],
[67., 8., 9.],
[130., 24., 15.],
[-0.5, 25, 100]]).astype(np.float32)
argmin_a0 = NetArgminWithValue(axis=0, keep_dims=False)
output0, output1 = argmin_a0(Tensor(x))
expect0 = np.array([3, 1, 0]).astype(np.int32)
expect1 = np.array([-0.5, 8., 5.]).astype(np.float32)
error = np.ones(shape=expect1.shape) * 1.0e-6
assert np.all(output0.asnumpy() == expect0)
assert np.all(np.abs(output1.asnumpy() - expect1) < error)
argmin_a0k = NetArgminWithValue(axis=0, keep_dims=True)
output0, output1 = argmin_a0k(Tensor(x))
expect0 = np.array([[3, 1, 0]]).astype(np.int32)
expect1 = np.array([[-0.5, 8., 5.]]).astype(np.float32)
error = np.ones(shape=expect1.shape) * 1.0e-6
assert np.all(output0.asnumpy() == expect0)
assert np.all(np.abs(output1.asnumpy() - expect1) < error)
argmin_a1 = NetArgminWithValue(axis=1, keep_dims=False)
output0, output1 = argmin_a1(Tensor(x))
expect0 = np.array([0, 1, 2, 0]).astype(np.int32)
expect1 = np.array([1., 8., 15., -0.5]).astype(np.float32)
error = np.ones(shape=expect1.shape) * 1.0e-6
assert np.all(output0.asnumpy() == expect0)
assert np.all(np.abs(output1.asnumpy() - expect1) < error)
argmin_a1k = NetArgminWithValue(axis=-1, keep_dims=True)
output0, output1 = argmin_a1k(Tensor(x))
expect0 = np.array([[0], [1], [2], [0]]).astype(np.int32)
expect1 = np.array([[1.], [8.], [15.], [-0.5]]).astype(np.float32)
error = np.ones(shape=expect1.shape) * 1.0e-6
assert np.all(output0.asnumpy() == expect0)
assert np.all(np.abs(output1.asnumpy() - expect1) < error)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_argminwithvalue_fp16():
x = np.array([[1., 20., 5.],
[67., 8., 9.],
[130., 24., 15.],
[-0.5, 25, 100]]).astype(np.float16)
argmin_a0 = NetArgminWithValue(axis=0, keep_dims=False)
output0, output1 = argmin_a0(Tensor(x))
expect0 = np.array([3, 1, 0]).astype(np.int32)
expect1 = np.array([-0.5, 8., 5.]).astype(np.float16)
error = np.ones(shape=expect1.shape) * 1.0e-6
assert np.all(output0.asnumpy() == expect0)
assert np.all(np.abs(output1.asnumpy() - expect1) < error)
argmin_a0k = NetArgminWithValue(axis=0, keep_dims=True)
output0, output1 = argmin_a0k(Tensor(x))
expect0 = np.array([[3, 1, 0]]).astype(np.int32)
expect1 = np.array([[-0.5, 8., 5.]]).astype(np.float16)
error = np.ones(shape=expect1.shape) * 1.0e-6
assert np.all(output0.asnumpy() == expect0)
assert np.all(np.abs(output1.asnumpy() - expect1) < error)
argmin_a1 = NetArgminWithValue(axis=1, keep_dims=False)
output0, output1 = argmin_a1(Tensor(x))
expect0 = np.array([0, 1, 2, 0]).astype(np.int32)
expect1 = np.array([1., 8., 15., -0.5]).astype(np.float16)
error = np.ones(shape=expect1.shape) * 1.0e-6
assert np.all(output0.asnumpy() == expect0)
assert np.all(np.abs(output1.asnumpy() - expect1) < error)
argmin_a1k = NetArgminWithValue(axis=-1, keep_dims=True)
output0, output1 = argmin_a1k(Tensor(x))
expect0 = np.array([[0], [1], [2], [0]]).astype(np.int32)
expect1 = np.array([[1.], [8.], [15.], [-0.5]]).astype(np.float16)
error = np.ones(shape=expect1.shape) * 1.0e-6
assert np.all(output0.asnumpy() == expect0)
assert np.all(np.abs(output1.asnumpy() - expect1) < error)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_argminwithvalue_tensor():
prop = 100 if np.random.random() > 0.5 else -100
x = np.random.randn(3, 4, 5, 6).astype(np.float16) * prop
argmin_a0 = NetArgminWithValue(axis=-2, keep_dims=False)
output0, output1 = argmin_a0(Tensor(x))
expect0 = np.argmin(x, axis=-2)
expect1 = np.min(x, axis=-2).astype(np.float16)
error = np.ones(shape=expect1.shape) * 1.0e-6
assert np.all(output0.asnumpy() == expect0)
assert np.all(np.abs(output1.asnumpy() - expect1) < error)

@ -33,6 +33,24 @@ class SubNet(nn.Cell):
return self.sub(x, y)
class DivNet(nn.Cell):
def __init__(self):
super(DivNet, self).__init__()
self.div = P.Div()
def construct(self, x, y):
return self.div(x, y)
class ModNet(nn.Cell):
def __init__(self):
super(ModNet, self).__init__()
self.mod = P.Mod()
def construct(self, x, y):
return self.mod(x, y)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@ -43,4 +61,194 @@ def test_sub():
output = net(Tensor(x), Tensor(y, mindspore.float32))
expect_output = x - y
assert np.all(output.asnumpy() == expect_output)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_div():
prop = 1 if np.random.random() < 0.5 else -1
x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
y0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
x1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
y1_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop
x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop
y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop
x3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
y3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
x4_np = np.array(768).astype(np.float32) * prop
y4_np = np.array(3072.5).astype(np.float32) * prop
x5_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop
y5_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
x6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
y6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
x7_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop
y7_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop
x0 = Tensor(x0_np)
y0 = Tensor(y0_np)
x1 = Tensor(x1_np)
y1 = Tensor(y1_np)
x2 = Tensor(x2_np)
y2 = Tensor(y2_np)
x3 = Tensor(x3_np)
y3 = Tensor(y3_np)
x4 = Tensor(x4_np)
y4 = Tensor(y4_np)
x5 = Tensor(x5_np)
y5 = Tensor(y5_np)
x6 = Tensor(x6_np)
y6 = Tensor(y6_np)
x7 = Tensor(x7_np)
y7 = Tensor(y7_np)
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
div = DivNet()
output0 = div(x0, y0)
expect0 = np.divide(x0_np, y0_np)
diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0)
assert output0.shape == expect0.shape
output1 = div(x1, y1)
expect1 = np.divide(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1)
assert output1.shape == expect1.shape
output2 = div(x2, y2)
expect2 = np.divide(x2_np, y2_np).astype(np.float16)
diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2)
assert output2.shape == expect2.shape
output3 = div(x3, y3)
expect3 = np.divide(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3)
assert output3.shape == expect3.shape
output4 = div(x4, y4)
expect4 = np.divide(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4)
assert output4.shape == expect4.shape
output5 = div(x5, y5)
expect5 = x5_np // y5_np
assert np.all(output5.asnumpy() == expect5)
output6 = div(x6, y6)
expect6 = np.divide(x6_np, y6_np)
diff6 = output6.asnumpy() - expect6
error6 = np.ones(shape=expect6.shape) * 1.0e-5
assert np.all(diff6 < error6)
assert output6.shape == expect6.shape
output7 = div(x7, y7)
expect7 = np.divide(x7_np, y7_np).astype(np.int64)
assert np.all(output7.asnumpy() == expect7)
assert output7.shape == expect7.shape
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_mod():
prop = 1 if np.random.random() < 0.5 else -1
x0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
y0_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
x1_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
y1_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float32) * prop
x2_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.float16) * prop
y2_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float16) * prop
x3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
y3_np = np.random.randint(1, 100, 1).astype(np.float32) * prop
x4_np = np.array(768).astype(np.float32) * prop
y4_np = np.array(3072.5).astype(np.float32) * prop
x5_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int32) * prop
y5_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
x6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int32) * prop
y6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
x7_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop
y7_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop
x0 = Tensor(x0_np)
y0 = Tensor(y0_np)
x1 = Tensor(x1_np)
y1 = Tensor(y1_np)
x2 = Tensor(x2_np)
y2 = Tensor(y2_np)
x3 = Tensor(x3_np)
y3 = Tensor(y3_np)
x4 = Tensor(x4_np)
y4 = Tensor(y4_np)
x5 = Tensor(x5_np)
y5 = Tensor(y5_np)
x6 = Tensor(x6_np)
y6 = Tensor(y6_np)
x7 = Tensor(x7_np)
y7 = Tensor(y7_np)
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
mod = ModNet()
output0 = mod(x0, y0)
expect0 = np.mod(x0_np, y0_np)
diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0)
assert output0.shape == expect0.shape
output1 = mod(x1, y1)
expect1 = np.mod(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1)
assert output1.shape == expect1.shape
output2 = mod(x2, y2)
expect2 = np.mod(x2_np, y2_np).astype(np.float16)
diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2)
assert output2.shape == expect2.shape
output3 = mod(x3, y3)
expect3 = np.mod(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3)
assert output3.shape == expect3.shape
output4 = mod(x4, y4)
expect4 = np.mod(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4)
assert output4.shape == expect4.shape
output5 = mod(x5, y5)
expect5 = np.mod(x5_np, y5_np)
assert np.all(output5.asnumpy() == expect5)
assert output5.shape == expect5.shape
output6 = mod(x6, y6)
expect6 = np.mod(x6_np, y6_np)
diff6 = output6.asnumpy() - expect6
error6 = np.ones(shape=expect6.shape) * 1.0e-5
assert np.all(diff6 < error6)
assert output6.shape == expect6.shape
output7 = mod(x7, y7)
expect7 = np.mod(x7_np, y7_np).astype(np.int64)
assert np.all(output7.asnumpy() == expect7)
assert output6.shape == expect6.shape
test_sub()
test_div()
test_mod()

@ -32,6 +32,15 @@ class SquareNet(nn.Cell):
return self.square(x)
class FloorNet(nn.Cell):
def __init__(self):
super(FloorNet, self).__init__()
self.floor = P.Floor()
def construct(self, x):
return self.floor(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@ -78,4 +87,26 @@ def test_square():
print(output)
assert np.all(output.asnumpy() == expect_output)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_floor():
net = FloorNet()
x = np.random.randn(3, 4).astype(np.float16)
x = x * 100
output = net(Tensor(x))
expect_output = np.floor(x).astype(np.float16)
print(output.asnumpy())
assert np.all(output.asnumpy() == expect_output)
x = np.random.randn(4, 3).astype(np.float32)
x = x * 100
output = net(Tensor(x))
expect_output = np.floor(x)
print(output.asnumpy())
assert np.all(output.asnumpy() == expect_output)
test_square()
test_floor()

@ -0,0 +1,185 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore.common.tensor import Tensor
from mindspore.nn import Cell
from mindspore.ops import operations as P
class ConstScalarAndTensorMinimum(Cell):
def __init__(self):
super(ConstScalarAndTensorMinimum, self).__init__()
self.min = P.Minimum()
self.x = 20
def construct(self, y):
return self.min(self.x, y)
class TwoTensorsMinimum(Cell):
def __init__(self):
super(TwoTensorsMinimum, self).__init__()
self.min = P.Minimum()
def construct(self, x, y):
return self.min(x, y)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_minimum_constScalar_tensor_int():
x = Tensor(np.array([[2, 3, 4], [100, 200, 300]]).astype(np.int32))
expect = [[2, 3, 4], [20, 20, 20]]
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
min_op = ConstScalarAndTensorMinimum()
output = min_op(x)
assert np.all(output.asnumpy() == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_minimum_two_tensors_Not_Broadcast_int():
prop = 100 if np.random.random() > 0.5 else -100
x = np.random.randn(3, 4, 5).astype(np.int32) * prop
y = np.random.randn(3, 4, 5).astype(np.int32) * prop
expect = np.minimum(x, y).astype(np.int32)
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
min_op = TwoTensorsMinimum()
output = min_op(Tensor(x), Tensor(y))
assert np.all(output.asnumpy() == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_minimum_two_tensors_Broadcast_int():
prop = 100 if np.random.random() > 0.5 else -100
x = np.random.randn(3, 4, 5).astype(np.int32) * prop
y = np.random.randn(3, 1, 1).astype(np.int32) * prop
expect = np.minimum(x, y).astype(np.int32)
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
min_op = TwoTensorsMinimum()
output = min_op(Tensor(x), Tensor(y))
assert np.all(output.asnumpy() == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_minimum_two_tensors_Broadcast_oneDimension_int():
prop = 100 if np.random.random() > 0.5 else -100
x = np.random.randn(3).astype(np.int32) * prop
y = np.random.randn(3).astype(np.int32) * prop
expect = np.minimum(x, y).astype(np.int32)
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
min_op = TwoTensorsMinimum()
output = min_op(Tensor(x), Tensor(y))
assert np.all(output.asnumpy() == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_minimum_two_tensors_notBroadcast_all_oneDimension_int():
x = Tensor(np.array([[2]]).astype(np.int32))
y = Tensor(np.array([[100]]).astype(np.int32))
expect = [[2]]
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
min_op = TwoTensorsMinimum()
output = min_op(x, y)
assert np.all(output.asnumpy() == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_minimum_two_tensors_notBroadcast_float32():
prop = 100 if np.random.random() > 0.5 else -100
x = np.random.randn(3, 4, 5).astype(np.float32) * prop
y = np.random.randn(3, 4, 5).astype(np.float32) * prop
expect = np.minimum(x, y).astype(np.float32)
error = np.ones(shape=expect.shape) * 1.0e-5
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
min_op = TwoTensorsMinimum()
output = min_op(Tensor(x), Tensor(y))
diff = output.asnumpy() - expect
assert np.all(np.abs(diff) < error)
assert output.shape == expect.shape
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_minimum_two_tensors_notBroadcast_float16():
prop = 100 if np.random.random() > 0.5 else -100
x = np.random.randn(3, 4, 5).astype(np.float16) * prop
y = np.random.randn(3, 4, 5).astype(np.float16) * prop
expect = np.minimum(x, y).astype(np.float16)
error = np.ones(shape=expect.shape) * 1.0e-5
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
min_op = TwoTensorsMinimum()
output = min_op(Tensor(x), Tensor(y))
diff = output.asnumpy() - expect
assert np.all(np.abs(diff) < error)
assert output.shape == expect.shape
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_minimum_two_tensors_Broadcast_float16():
prop = 100 if np.random.random() > 0.5 else -100
x = np.random.randn(3, 4, 5).astype(np.float16) * prop
y = np.random.randn(3, 4, 1).astype(np.float16) * prop
expect = np.minimum(x, y).astype(np.float16)
error = np.ones(shape=expect.shape) * 1.0e-5
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
min_op = TwoTensorsMinimum()
output = min_op(Tensor(x), Tensor(y))
diff = output.asnumpy() - expect
assert np.all(np.abs(diff) < error)
assert output.shape == expect.shape
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_minimum_two_tensors_notBroadcast_float64():
prop = 100 if np.random.random() > 0.5 else -100
x = np.random.randn(3, 4, 1).astype(np.float64) * prop
y = np.random.randn(3, 4, 5).astype(np.float64) * prop
expect = np.minimum(x, y).astype(np.float64)
error = np.ones(shape=expect.shape) * 1.0e-5
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
min_op = TwoTensorsMinimum()
output = min_op(Tensor(x), Tensor(y))
diff = output.asnumpy() - expect
assert np.all(np.abs(diff) < error)
assert output.shape == expect.shape
Loading…
Cancel
Save