add export script for vgg16,bert. fix faster-rcnn and inception bug

pull/8447/head
yuzhenhua 4 years ago
parent bedc733e42
commit d0f05a7670

@ -23,20 +23,22 @@ from mindspore.train.serialization import load_checkpoint, load_param_into_net,
from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50
from src.config import config
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='fasterrcnn_export')
parser.add_argument('--ckpt_file', type=str, default='', help='fasterrcnn ckpt file.')
parser.add_argument('--output_file', type=str, default='', help='fasterrcnn output air name.')
args_opt = parser.parse_args()
parser = argparse.ArgumentParser(description='fasterrcnn_export')
parser.add_argument('--ckpt_file', type=str, default='', help='fasterrcnn ckpt file.')
parser.add_argument('--output_file', type=str, default='', help='fasterrcnn output air name.')
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args()
if __name__ == '__main__':
net = Faster_Rcnn_Resnet50(config=config)
param_dict = load_checkpoint(args_opt.ckpt_file)
param_dict = load_checkpoint(args.ckpt_file)
load_param_into_net(net, param_dict)
img = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, 768, 1280]), ms.float16)
img_shape = Tensor(np.random.uniform(0.0, 1.0, size=[768, 1280, 1]), ms.float16)
gt_bboxes = Tensor(np.random.uniform(0.0, 1.0, size=[1, 128]), ms.float16)
gt_label = Tensor(np.random.uniform(0.0, 1.0, size=[1, 128]), ms.int32)
gt_num = Tensor(np.random.uniform(0.0, 1.0, size=[1, 128]), ms.bool)
export(net, img, img_shape, gt_bboxes, gt_label, gt_num, file_name=args_opt.output_file, file_format="AIR")
img = Tensor(np.zeros([config.test_batch_size, 3, config.img_height, config.img_width]), ms.float16)
img_metas = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, 4]), ms.float16)
gt_bboxes = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, config.num_gts]), ms.float16)
gt_label = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, config.num_gts]), ms.int32)
gt_num = Tensor(np.random.uniform(0.0, 1.0, size=[config.test_batch_size, config.num_gts]), ms.bool_)
export(net, img, img_metas, gt_bboxes, gt_label, gt_num, file_name=args.output_file, file_format=args.file_format)

@ -13,7 +13,7 @@
# limitations under the License.
# ============================================================================
"""
##############export checkpoint file into air and onnx models#################
export checkpoint file into models
"""
import argparse
import numpy as np
@ -25,16 +25,19 @@ from mindspore.train.serialization import load_checkpoint, load_param_into_net,
from src.config import config_gpu as cfg
from src.inception_v3 import InceptionV3
parser = argparse.ArgumentParser(description='inceptionv3 export')
parser.add_argument('--ckpt_file', type=str, required=True, help='inceptionv3 ckpt file.')
parser.add_argument('--output_file', type=str, default='inceptionv3.air', help='inceptionv3 output air name.')
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
parser.add_argument('--width', type=int, default=299, help='input width')
parser.add_argument('--height', type=int, default=299, help='input height')
args = parser.parse_args()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='checkpoint export')
parser.add_argument('--checkpoint', type=str, default='', help='checkpoint of inception-v3 (Default: None)')
args_opt = parser.parse_args()
net = InceptionV3(num_classes=cfg.num_classes, is_training=False)
param_dict = load_checkpoint(args_opt.checkpoint)
param_dict = load_checkpoint(args.ckpt_file)
load_param_into_net(net, param_dict)
input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, 299, 299]), ms.float32)
export(net, input_arr, file_name=cfg.onnx_filename, file_format="ONNX")
export(net, input_arr, file_name=cfg.air_filename, file_format="AIR")
input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[cfg.batch_size, 3, args.width, args.height]), ms.float32)
export(net, input_arr, file_name=args.output_file, file_format=args.file_format)

@ -0,0 +1,61 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export checkpoint file into models"""
import argparse
import numpy as np
from mindspore import Tensor, context
import mindspore.common.dtype as mstype
from mindspore.train.serialization import load_checkpoint, export
from src.vgg import vgg16
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
parser = argparse.ArgumentParser(description='VGG16 export')
parser.add_argument('--dataset', type=str, choices=["cifar10", "imagenet2012"], default="cifar10", help='ckpt file')
parser.add_argument('--ckpt_file', type=str, required=True, help='vgg16 ckpt file.')
parser.add_argument('--output_file', type=str, default='vgg16.air', help='vgg16 output air name.')
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args()
if args.dataset == "cifar10":
from src.config import cifar_cfg as cfg
else:
from src.config import imagenet_cfg as cfg
args.num_classes = cfg.num_classes
args.pad_mode = cfg.pad_mode
args.padding = cfg.padding
args.has_bias = cfg.has_bias
args.initialize_mode = cfg.initialize_mode
args.batch_norm = cfg.batch_norm
args.has_dropout = cfg.has_dropout
args.image_size = list(map(int, cfg.image_size.split(',')))
if __name__ == '__main__':
if args.dataset == "cifar10":
net = vgg16(num_classes=args.num_classes, args=args)
else:
net = vgg16(args.num_classes, args, phase="test")
net.add_flags_recursive(fp16=True)
load_checkpoint(args.ckpt_file, net=net)
net.set_train(False)
input_data = Tensor(np.zeros([cfg.batch_size, 3, args.image_size[0], args.image_size[1]]), mstype.float32)
export(net, input_data, file_name=args.output_file, file_format=args.file_format)

@ -0,0 +1,74 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export checkpoint file into models"""
import argparse
import numpy as np
from mindspore import Tensor, context
import mindspore.common.dtype as mstype
from mindspore.train.serialization import load_checkpoint, export
from src.finetune_eval_model import BertCLSModel, BertSquadModel, BertNERModel
from src.finetune_eval_config import optimizer_cfg, bert_net_cfg
from src.utils import convert_labels_to_index
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
parser = argparse.ArgumentParser(description='Bert export')
parser.add_argument('--use_crf', type=str, default="false", help='Use cfg, default is false.')
parser.add_argument('--downstream_task', type=str, choices=["NER", "CLS", "SQUAD"], default="NER",
help='at presentsupport NER only')
parser.add_argument('--num_class', type=int, default=2, help='The number of class, default is 2.')
parser.add_argument('--label_file_path', type=str, default="", help='label file path, used in clue benchmark.')
parser.add_argument('--ckpt_file', type=str, required=True, help='Bert ckpt file.')
parser.add_argument('--output_file', type=str, default='Bert.air', help='bert output air name.')
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
args = parser.parse_args()
label_list = []
with open(args.label_file_path) as f:
for label in f:
label_list.append(label.strip())
tag_to_index = convert_labels_to_index(label_list)
if args.use_crf.lower() == "true":
max_val = max(tag_to_index.values())
tag_to_index["<START>"] = max_val + 1
tag_to_index["<STOP>"] = max_val + 2
number_labels = len(tag_to_index)
else:
number_labels = args.num_class
if __name__ == '__main__':
if args.downstream_task == "NER":
net = BertNERModel(bert_net_cfg, False, number_labels, use_crf=(args.use_crf.lower() == "true"))
elif args.downstream_task == "CLS":
net = BertCLSModel(bert_net_cfg, False, num_labels=number_labels)
elif args.downstream_task == "SQUAD":
net = BertSquadModel(bert_net_cfg, False)
else:
raise ValueError("unsupported downstream task")
load_checkpoint(args.ckpt_file, net=net)
net.set_train(False)
input_ids = Tensor(np.zeros([optimizer_cfg.batch_size, bert_net_cfg.seq_length]), mstype.int32)
input_mask = Tensor(np.zeros([optimizer_cfg.batch_size, bert_net_cfg.seq_length]), mstype.int32)
token_type_id = Tensor(np.zeros([optimizer_cfg.batch_size, bert_net_cfg.seq_length]), mstype.int32)
input_data = [input_ids, input_mask, token_type_id]
export(net, *input_data, file_name=args.output_file, file_format=args.file_format)
Loading…
Cancel
Save