|
|
|
@ -28,6 +28,7 @@ import mindspore.dataset.engine.datasets as de
|
|
|
|
|
import mindspore.dataset.transforms.c_transforms as C
|
|
|
|
|
from mindspore import context
|
|
|
|
|
from mindspore import log as logger
|
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
from mindspore.common.tensor import Tensor
|
|
|
|
|
from mindspore.nn.optim import Lamb
|
|
|
|
|
from mindspore.train.callback import Callback
|
|
|
|
@ -129,7 +130,10 @@ def weight_variable(shape):
|
|
|
|
|
class BertLearningRate(lr_schedules.LearningRateSchedule):
|
|
|
|
|
def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power):
|
|
|
|
|
super(BertLearningRate, self).__init__()
|
|
|
|
|
self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps)
|
|
|
|
|
self.warmup_flag = False
|
|
|
|
|
if warmup_steps > 0:
|
|
|
|
|
self.warmup_flag = True
|
|
|
|
|
self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps)
|
|
|
|
|
self.decay_lr = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
|
|
|
|
|
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
|
|
|
|
|
|
|
|
|
@ -138,10 +142,13 @@ class BertLearningRate(lr_schedules.LearningRateSchedule):
|
|
|
|
|
self.cast = P.Cast()
|
|
|
|
|
|
|
|
|
|
def construct(self, global_step):
|
|
|
|
|
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
|
|
|
|
|
warmup_lr = self.warmup_lr(global_step)
|
|
|
|
|
decay_lr = self.decay_lr(global_step)
|
|
|
|
|
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
|
|
|
|
|
if self.warmup_flag:
|
|
|
|
|
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
|
|
|
|
|
warmup_lr = self.warmup_lr(global_step)
|
|
|
|
|
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
|
|
|
|
|
else:
|
|
|
|
|
lr = decay_lr
|
|
|
|
|
return lr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -174,6 +181,10 @@ class TimeMonitor(Callback):
|
|
|
|
|
self.epoch_mseconds_list.append(epoch_mseconds)
|
|
|
|
|
self.per_step_mseconds_list.append(epoch_mseconds / self.data_size)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_bert_percision():
|
|
|
|
|
"""test bert percision"""
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
|
|
|
|
@ -187,10 +198,11 @@ def test_bert_percision():
|
|
|
|
|
power=10.0, warmup_steps=0)
|
|
|
|
|
decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()
|
|
|
|
|
no_decay_filter = lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower()
|
|
|
|
|
decay_params = list(filter(decay_filter, net_with_loss.trainable_params()))
|
|
|
|
|
other_params = list(filter(no_decay_filter, net_with_loss.trainable_params()))
|
|
|
|
|
decay_params = list(filter(decay_filter, netwithloss.trainable_params()))
|
|
|
|
|
other_params = list(filter(no_decay_filter, netwithloss.trainable_params()))
|
|
|
|
|
group_params = [{'params': decay_params, 'weight_decay': 0.01},
|
|
|
|
|
{'params': other_params}]
|
|
|
|
|
{'params': other_params},
|
|
|
|
|
{'order_params': netwithloss.trainable_params()}]
|
|
|
|
|
optimizer = Lamb(group_params, lr)
|
|
|
|
|
scale_window = 3
|
|
|
|
|
scale_manager = DynamicLossScaleManager(2 ** 16, 2, scale_window)
|
|
|
|
@ -239,6 +251,10 @@ def test_bert_percision():
|
|
|
|
|
print("loss scale: {}".format(loss_scale))
|
|
|
|
|
assert np.allclose(loss_scale, expect_loss_scale, 0, 0)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_bert_performance():
|
|
|
|
|
"""test bert performance"""
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
|
|
|
|
@ -253,10 +269,11 @@ def test_bert_performance():
|
|
|
|
|
power=10.0, warmup_steps=0)
|
|
|
|
|
decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()
|
|
|
|
|
no_decay_filter = lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower()
|
|
|
|
|
decay_params = list(filter(decay_filter, net_with_loss.trainable_params()))
|
|
|
|
|
other_params = list(filter(no_decay_filter, net_with_loss.trainable_params()))
|
|
|
|
|
decay_params = list(filter(decay_filter, netwithloss.trainable_params()))
|
|
|
|
|
other_params = list(filter(no_decay_filter, netwithloss.trainable_params()))
|
|
|
|
|
group_params = [{'params': decay_params, 'weight_decay': 0.01},
|
|
|
|
|
{'params': other_params}]
|
|
|
|
|
{'params': other_params},
|
|
|
|
|
{'order_params': netwithloss.trainable_params()}]
|
|
|
|
|
optimizer = Lamb(group_params, lr)
|
|
|
|
|
|
|
|
|
|
scale_window = 3
|
|
|
|
|