parent
							
								
									1c3fc5c49b
								
							
						
					
					
						commit
						d22f506431
					
				@ -0,0 +1,76 @@
 | 
				
			||||
# Copyright 2020 Huawei Technologies Co., Ltd
 | 
				
			||||
#
 | 
				
			||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
# you may not use this file except in compliance with the License.
 | 
				
			||||
# You may obtain a copy of the License at
 | 
				
			||||
#
 | 
				
			||||
# http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
#
 | 
				
			||||
# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
# See the License for the specific language governing permissions and
 | 
				
			||||
# limitations under the License.
 | 
				
			||||
 | 
				
			||||
import numpy as np
 | 
				
			||||
 | 
				
			||||
import mindspore as ms
 | 
				
			||||
from mindspore import Tensor
 | 
				
			||||
from mindspore import context
 | 
				
			||||
from mindspore.common.api import _executor
 | 
				
			||||
from mindspore.common.parameter import Parameter
 | 
				
			||||
from mindspore.ops import composite as C
 | 
				
			||||
from mindspore.ops import operations as P
 | 
				
			||||
import mindspore.nn as nn
 | 
				
			||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
grad_all = C.GradOperation(get_all=True)
 | 
				
			||||
class NetWithLoss(nn.Cell):
 | 
				
			||||
    def __init__(self, network):
 | 
				
			||||
        super(NetWithLoss, self).__init__()
 | 
				
			||||
        self.loss = VirtualLoss()
 | 
				
			||||
        self.network = network
 | 
				
			||||
 | 
				
			||||
    def construct(self, x, y, b):
 | 
				
			||||
        predict = self.network(x, y, b)
 | 
				
			||||
        return self.loss(predict)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class GradWrap(nn.Cell):
 | 
				
			||||
    def __init__(self, network):
 | 
				
			||||
        super(GradWrap, self).__init__()
 | 
				
			||||
        self.network = network
 | 
				
			||||
 | 
				
			||||
    def construct(self, x, y, b):
 | 
				
			||||
        return grad_all(self.network)(x, y, b)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# model_parallel test
 | 
				
			||||
def test_two_matmul_batchnorm_ex():
 | 
				
			||||
    class Net(nn.Cell):
 | 
				
			||||
        def __init__(self, strategy1, strategy2):
 | 
				
			||||
            super().__init__()
 | 
				
			||||
            self.matmul1 = P.MatMul().set_strategy(strategy1)
 | 
				
			||||
            self.norm = P.FusedBatchNormEx()
 | 
				
			||||
            self.gamma = Parameter(Tensor(np.ones([64]), dtype=ms.float32), name="gamma")
 | 
				
			||||
            self.beta = Parameter(Tensor(np.ones([64]), dtype=ms.float32), name="beta")
 | 
				
			||||
            self.mean = Parameter(Tensor(np.ones([64]), dtype=ms.float32), name="mean")
 | 
				
			||||
            self.var = Parameter(Tensor(np.ones([64]), dtype=ms.float32), name="var")
 | 
				
			||||
            self.matmul2 = P.MatMul().set_strategy(strategy2)
 | 
				
			||||
 | 
				
			||||
        def construct(self, x, y, b):
 | 
				
			||||
            out = self.matmul1(x, y)
 | 
				
			||||
            out = self.norm(out, self.gamma, self.beta, self.mean, self.var)[0]
 | 
				
			||||
            out = self.matmul2(out, b)
 | 
				
			||||
            return out
 | 
				
			||||
 | 
				
			||||
    context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8)
 | 
				
			||||
    strategy1 = ((4, 2), (2, 1))
 | 
				
			||||
    strategy2 = ((1, 8), (8, 1))
 | 
				
			||||
    net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
 | 
				
			||||
    net.set_auto_parallel()
 | 
				
			||||
    x = Tensor(np.ones([128, 32]), dtype=ms.float32)
 | 
				
			||||
    y = Tensor(np.ones([32, 64]), dtype=ms.float32)
 | 
				
			||||
    b = Tensor(np.ones([64, 64]), dtype=ms.float32)
 | 
				
			||||
    _executor.compile(net, x, y, b)
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue