add export.py

pull/6843/head
wukesong 4 years ago
parent 6fd4848a63
commit d3ed6d27c7

@ -0,0 +1,55 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############export checkpoint file into air and onnx models#################
python export.py
"""
import argparse
import numpy as np
import mindspore as ms
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
from src.config import alexnet_cifar10_cfg, alexnet_imagenet_cfg
from src.alexnet import AlexNet
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Classification')
parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'],
help='please choose dataset: imagenet or cifar10.')
parser.add_argument('--device_target', type=str, default="Ascend",
choices=['Ascend', 'GPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\
path where the trained ckpt file')
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
if args_opt.dataset_name == 'cifar10':
cfg = alexnet_cifar10_cfg
elif args_opt.dataset_name == 'imagenet':
cfg = alexnet_imagenet_cfg
else:
raise ValueError("dataset is not support.")
net = AlexNet(num_classes=cfg.num_classes)
param_dict = load_checkpoint(args_opt.ckpt_path)
load_param_into_net(net, param_dict)
input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, cfg.image_height, cfg.image_width]), ms.float32)
export(net, input_arr, file_name=cfg.air_name, file_format="AIR")

@ -29,6 +29,7 @@ alexnet_cifar10_cfg = edict({
'image_width': 227,
'save_checkpoint_steps': 1562,
'keep_checkpoint_max': 10,
'air_name': "alexnet.air",
})
alexnet_imagenet_cfg = edict({
@ -42,6 +43,7 @@ alexnet_imagenet_cfg = edict({
'image_width': 227,
'save_checkpoint_steps': 625,
'keep_checkpoint_max': 10,
'air_name': "alexnet.air",
# opt
'weight_decay': 0.0001,

@ -0,0 +1,48 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
export quantization aware training network to infer `AIR` backend.
"""
import argparse
import numpy as np
import mindspore
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
from src.config import mnist_cfg as cfg
from src.lenet import LeNet5
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
parser.add_argument('--device_target', type=str, default="Ascend",
choices=['Ascend', 'GPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--ckpt_path', type=str, default="",
help='if mode is test, must provide path where the trained ckpt file')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
# define fusion network
network = LeNet5(cfg.num_classes)
# load network checkpoint
param_dict = load_checkpoint(args.ckpt_path)
load_param_into_net(network, param_dict)
# export network
inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32)
export(network, inputs, file_name=cfg.air_name, file_format='AIR')

@ -29,4 +29,5 @@ mnist_cfg = edict({
'image_width': 32,
'save_checkpoint_steps': 1875,
'keep_checkpoint_max': 10,
'air_name': "lenet.air",
})

Loading…
Cancel
Save