!7767 GPU update resnet50 readme and add cast type

Merge pull request !7767 from VectorSL/readme
pull/7767/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit d479b91093

@ -86,8 +86,9 @@ bool ReducePrecisionFusion::Run(const FuncGraphPtr &graph) {
auto used_node_index = used_node_list->at(j).second - 1;
if (AnfAlgo::GetCNodeName(used_node) == prim::kPrimTupleGetItem->name()) {
ProcessTupleGetItem(graph, used_node, used_node_index, deviceType, inferType);
} else {
ReducePrecision(graph, used_node, used_node_index, deviceType, inferType);
}
ReducePrecision(graph, used_node, used_node_index, deviceType, inferType);
}
}
}

@ -65,6 +65,13 @@ cast_op_info = AkgGpuRegOp("Cast") \
.dtype_format(DataType.F32_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_Default, DataType.F64_Default) \
.dtype_format(DataType.F32_Default, DataType.BOOL_Default) \
.dtype_format(DataType.F32_Default, DataType.I8_Default) \
.dtype_format(DataType.F32_Default, DataType.I16_Default) \
.dtype_format(DataType.F32_Default, DataType.I64_Default) \
.dtype_format(DataType.F32_Default, DataType.U8_Default) \
.dtype_format(DataType.F32_Default, DataType.U16_Default) \
.dtype_format(DataType.F32_Default, DataType.U32_Default) \
.dtype_format(DataType.F32_Default, DataType.U64_Default) \
.dtype_format(DataType.F64_Default, DataType.BOOL_Default) \
.dtype_format(DataType.F64_Default, DataType.F32_Default) \
.dtype_format(DataType.F64_Default, DataType.F16_Default) \

@ -419,13 +419,13 @@ result: {'top_5_accuracy': 0.9342589628681178, 'top_1_accuracy': 0.7680657810499
| uploaded Date | 04/01/2020 (month/day/year) | 08/01/2020 (month/day/year)
| MindSpore Version | 0.1.0-alpha |0.6.0-alpha |
| Dataset | ImageNet2012 | ImageNet2012|
| Training Parameters | epoch=90, steps per epoch=626, batch_size = 256 |epoch=90, steps per epoch=5004, batch_size = 32 |
| Training Parameters | epoch=90, steps per epoch=626, batch_size = 256 |epoch=90, steps per epoch=626, batch_size = 256 |
| Optimizer | Momentum |Momentum|
| Loss Function | Softmax Cross Entropy |Softmax Cross Entropy |
| outputs | probability | probability |
| Loss | 1.8464266 | 1.9023 |
| Speed | 118ms/step8pcs |67.1ms/step8pcs|
| Total time | 114 mins | 500 mins|
| Speed | 118ms/step8pcs |270ms/step8pcs|
| Total time | 114 mins | 260 mins|
| Parameters (M) | 25.5 | 25.5 |
| Checkpoint for Fine tuning | 197M (.ckpt file) |197M (.ckpt file) |
| Scripts | [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnet) | [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnet) |

@ -502,8 +502,8 @@ def test_cast26():
def test_cast27():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t0 = mstype.float64
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
t1 = mstype.float32
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t1 = mstype.uint64
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
@ -511,4 +511,55 @@ def test_cast27():
type0 = output[0].asnumpy().dtype
assert type0 == 'float64'
type1 = output[1].asnumpy().dtype
assert type1 == 'float32'
assert type1 == 'uint64'
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast28():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t0 = mstype.int8
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t1 = mstype.int16
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int8'
type1 = output[1].asnumpy().dtype
assert type1 == 'int16'
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast29():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t0 = mstype.int64
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t1 = mstype.uint8
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int64'
type1 = output[1].asnumpy().dtype
assert type1 == 'uint8'
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast30():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t0 = mstype.uint16
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t1 = mstype.uint32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'uint16'
type1 = output[1].asnumpy().dtype
assert type1 == 'uint32'

Loading…
Cancel
Save