!2836 bug fix in auto create quant graph in master
Merge pull request !2836 from chenzhongming/masterpull/2836/MERGE
commit
d48a5a4863
@ -0,0 +1,56 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
export quantization aware training network to infer `GEIR` backend.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
import mindspore
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.train.quant import quant
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
from src.config import mnist_cfg as cfg
|
||||
from src.lenet_fusion import LeNet5 as LeNet5Fusion
|
||||
|
||||
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
|
||||
parser.add_argument('--device_target', type=str, default="Ascend",
|
||||
choices=['Ascend', 'GPU'],
|
||||
help='device where the code will be implemented (default: Ascend)')
|
||||
parser.add_argument('--data_path', type=str, default="./MNIST_Data",
|
||||
help='path where the dataset is saved')
|
||||
parser.add_argument('--ckpt_path', type=str, default="",
|
||||
help='if mode is test, must provide path where the trained ckpt file')
|
||||
parser.add_argument('--dataset_sink_mode', type=bool, default=True,
|
||||
help='dataset_sink_mode is False or True')
|
||||
args = parser.parse_args()
|
||||
|
||||
if __name__ == "__main__":
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
||||
|
||||
# define fusion network
|
||||
network = LeNet5Fusion(cfg.num_classes)
|
||||
# convert fusion network to quantization aware network
|
||||
network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000)
|
||||
# load quantization aware network checkpoint
|
||||
param_dict = load_checkpoint(args.ckpt_path)
|
||||
load_param_into_net(network, param_dict)
|
||||
|
||||
# export network
|
||||
inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32)
|
||||
quant.export(network, inputs, file_name="lenet_quant", file_format='GEIR')
|
Loading…
Reference in new issue