parent
523c3f07e3
commit
d647fa8107
@ -0,0 +1,100 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/kernel_compiler/cpu/equal_cpu_kernel.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void EqualCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
if (dtype_ != AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 1)) {
|
||||
MS_LOG(EXCEPTION) << "Input0 and input1 must has the same data type";
|
||||
}
|
||||
}
|
||||
|
||||
bool EqualCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeBool) {
|
||||
LaunchKernel<bool>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt8) {
|
||||
LaunchKernel<int8_t>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt16) {
|
||||
LaunchKernel<int16_t>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt32 || dtype_ == kNumberTypeInt) {
|
||||
LaunchKernel<int32_t>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt64) {
|
||||
LaunchKernel<int64_t>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeUInt8) {
|
||||
LaunchKernel<uint8_t>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeUInt16) {
|
||||
LaunchKernel<uint16_t>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeUInt32 || dtype_ == kNumberTypeUInt) {
|
||||
LaunchKernel<uint32_t>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeUInt64) {
|
||||
LaunchKernel<uint64_t>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat16) {
|
||||
LaunchKernel<float16>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat64) {
|
||||
LaunchKernel<double>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Only support bool, int, uint, float, but actual data type is " << TypeIdLabel(dtype_);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void EqualCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||
T *left = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
T *right = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
bool *output = reinterpret_cast<bool *>(outputs[0]->addr);
|
||||
size_t elem_num = inputs[0]->size / sizeof(T);
|
||||
for (size_t i = 0; i < elem_num; i++) {
|
||||
if (left[i] == right[i]) {
|
||||
output[i] = true;
|
||||
} else {
|
||||
output[i] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void EqualCPUKernel::CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 2) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but EqualCPUKernel needs 2 inputs.";
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but EqualCPUKernel needs 1 output.";
|
||||
}
|
||||
auto input_shape0 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto input_shape1 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
if (input_shape0.size() != input_shape1.size()) {
|
||||
MS_LOG(EXCEPTION) << "Input0 and Input1 must have the same shape";
|
||||
}
|
||||
for (size_t i = 0; i < input_shape0.size(); ++i) {
|
||||
if (input_shape0[i] != input_shape1[i]) {
|
||||
MS_LOG(EXCEPTION) << "Input0 and Input1 must have the same shape";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,75 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EQUAL_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EQUAL_CPU_KERNEL_H_
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class EqualCPUKernel : public CPUKernel {
|
||||
public:
|
||||
EqualCPUKernel() = default;
|
||||
~EqualCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
Equal, KernelAttr().AddInputAttr(kNumberTypeBool).AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
|
||||
EqualCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Equal, KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeBool),
|
||||
EqualCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Equal, KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeBool),
|
||||
EqualCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Equal, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeBool),
|
||||
EqualCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Equal, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeBool),
|
||||
EqualCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Equal, KernelAttr().AddInputAttr(kNumberTypeUInt16).AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeBool),
|
||||
EqualCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Equal, KernelAttr().AddInputAttr(kNumberTypeUInt32).AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeBool),
|
||||
EqualCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Equal, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeBool),
|
||||
EqualCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Equal, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeBool),
|
||||
EqualCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Equal, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeBool),
|
||||
EqualCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EQUAL_CPU_KERNEL_H_
|
@ -0,0 +1,101 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetEqualBool(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetEqualBool, self).__init__()
|
||||
self.equal = P.Equal()
|
||||
x = Tensor(np.array([True, True, False]).astype(np.bool))
|
||||
y = Tensor(np.array([True, False, True]).astype(np.bool))
|
||||
self.x = Parameter(initializer(x, x.shape), name="x")
|
||||
self.y = Parameter(initializer(y, y.shape), name="y")
|
||||
|
||||
def construct(self):
|
||||
return self.equal(self.x, self.y)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_equal_bool():
|
||||
Equal = NetEqualBool()
|
||||
output = Equal()
|
||||
print("================================")
|
||||
expect = np.array([True, False, False]).astype(np.bool)
|
||||
print(output)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
class NetEqualInt(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetEqualInt, self).__init__()
|
||||
self.equal = P.Equal()
|
||||
x = Tensor(np.array([1, 20, 5]).astype(np.int32))
|
||||
y = Tensor(np.array([2, 20, 5]).astype(np.int32))
|
||||
self.x = Parameter(initializer(x, x.shape), name="x")
|
||||
self.y = Parameter(initializer(y, y.shape), name="y")
|
||||
|
||||
def construct(self):
|
||||
return self.equal(self.x, self.y)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_equal_int():
|
||||
Equal = NetEqualInt()
|
||||
output = Equal()
|
||||
print("================================")
|
||||
expect = np.array([False, True, True]).astype(np.bool)
|
||||
print(output)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
class NetEqualFloat(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetEqualFloat, self).__init__()
|
||||
self.equal = P.Equal()
|
||||
x = Tensor(np.array([1.2, 10.4, 5.5]).astype(np.float32))
|
||||
y = Tensor(np.array([1.2, 10.3, 5.4]).astype(np.float32))
|
||||
self.x = Parameter(initializer(x, x.shape), name="x")
|
||||
self.y = Parameter(initializer(y, y.shape), name="y")
|
||||
|
||||
def construct(self):
|
||||
return self.equal(self.x, self.y)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_equal_float():
|
||||
Equal = NetEqualFloat()
|
||||
output = Equal()
|
||||
print("================================")
|
||||
expect = np.array([True, False, False]).astype(np.bool)
|
||||
print(output)
|
||||
assert (output.asnumpy() == expect).all()
|
Loading…
Reference in new issue