|
|
|
@ -18,7 +18,6 @@
|
|
|
|
|
|
|
|
|
|
# [EfficientNet-B0 Description](#contents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Paper](https://arxiv.org/abs/1905.11946): Mingxing Tan, Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 2019.
|
|
|
|
|
|
|
|
|
|
# [Model architecture](#contents)
|
|
|
|
@ -27,27 +26,25 @@ The overall network architecture of EfficientNet-B0 is show below:
|
|
|
|
|
|
|
|
|
|
[Link](https://arxiv.org/abs/1905.11946)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# [Dataset](#contents)
|
|
|
|
|
|
|
|
|
|
Dataset used: [imagenet](http://www.image-net.org/)
|
|
|
|
|
|
|
|
|
|
- Dataset size: ~125G, 1.2W colorful images in 1000 classes
|
|
|
|
|
- Train: 120G, 1.2W images
|
|
|
|
|
- Test: 5G, 50000 images
|
|
|
|
|
- Train: 120G, 1.2W images
|
|
|
|
|
- Test: 5G, 50000 images
|
|
|
|
|
- Data format: RGB images.
|
|
|
|
|
- Note: Data will be processed in src/dataset.py
|
|
|
|
|
|
|
|
|
|
- Note: Data will be processed in src/dataset.py
|
|
|
|
|
|
|
|
|
|
# [Environment Requirements](#contents)
|
|
|
|
|
|
|
|
|
|
- Hardware GPU
|
|
|
|
|
- Prepare hardware environment with GPU processor.
|
|
|
|
|
- Prepare hardware environment with GPU processor.
|
|
|
|
|
- Framework
|
|
|
|
|
- [MindSpore](https://www.mindspore.cn/install/en)
|
|
|
|
|
- [MindSpore](https://www.mindspore.cn/install/en)
|
|
|
|
|
- For more information, please check the resources below:
|
|
|
|
|
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
|
|
|
|
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
|
|
|
|
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
|
|
|
|
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
|
|
|
|
|
|
|
|
|
# [Script description](#contents)
|
|
|
|
|
|
|
|
|
@ -77,7 +74,7 @@ Dataset used: [imagenet](http://www.image-net.org/)
|
|
|
|
|
|
|
|
|
|
Parameters for both training and evaluating can be set in config.py.
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
```python
|
|
|
|
|
'random_seed': 1, # fix random seed
|
|
|
|
|
'model': 'efficientnet_b0', # model name
|
|
|
|
|
'drop': 0.2, # dropout rate
|
|
|
|
@ -106,17 +103,17 @@ Parameters for both training and evaluating can be set in config.py.
|
|
|
|
|
|
|
|
|
|
## [Training Process](#contents)
|
|
|
|
|
|
|
|
|
|
#### Usage
|
|
|
|
|
### Usage
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
```python
|
|
|
|
|
GPU:
|
|
|
|
|
# distribute training example(8p)
|
|
|
|
|
sh run_distribute_train_for_gpu.sh
|
|
|
|
|
sh run_distribute_train_for_gpu.sh
|
|
|
|
|
# standalone training
|
|
|
|
|
sh run_standalone_train_for_gpu.sh DEVICE_ID DATA_DIR
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
#### Launch
|
|
|
|
|
### Launch
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
# distributed training example(8p) for GPU
|
|
|
|
@ -133,7 +130,7 @@ You can find checkpoint file together with result in log.
|
|
|
|
|
|
|
|
|
|
### Usage
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
```bash
|
|
|
|
|
# Evaluation
|
|
|
|
|
sh run_eval_for_gpu.sh DATA_DIR DEVICE_ID PATH_CHECKPOINT
|
|
|
|
|
```
|
|
|
|
@ -148,9 +145,9 @@ sh run_eval_for_gpu.sh /dataset/eval ./checkpoint/efficientnet_b0-600_1251.ckpt
|
|
|
|
|
|
|
|
|
|
#### Result
|
|
|
|
|
|
|
|
|
|
Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log.
|
|
|
|
|
Evaluation result will be stored in the scripts path. Under this, you can find result like the following in log.
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
```python
|
|
|
|
|
acc=76.96%(TOP1)
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
@ -186,7 +183,6 @@ acc=76.96%(TOP1)
|
|
|
|
|
| outputs | probability |
|
|
|
|
|
| Accuracy | acc=76.96%(TOP1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# [ModelZoo Homepage](#contents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
|
|
|
|