|
|
|
@ -34,7 +34,7 @@ class TopKCategoricalAccuracy(Metric):
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
|
|
|
|
|
>>> [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
|
|
|
|
|
... [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
|
|
|
|
|
>>> y = Tensor(np.array([2, 0, 1]), mindspore.float32)
|
|
|
|
|
>>> topk = nn.TopKCategoricalAccuracy(3)
|
|
|
|
|
>>> topk.clear()
|
|
|
|
@ -98,7 +98,7 @@ class Top1CategoricalAccuracy(TopKCategoricalAccuracy):
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
|
|
|
|
|
>>> [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
|
|
|
|
|
... [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
|
|
|
|
|
>>> y = Tensor(np.array([2, 0, 1]), mindspore.float32)
|
|
|
|
|
>>> topk = nn.Top1CategoricalAccuracy()
|
|
|
|
|
>>> topk.clear()
|
|
|
|
@ -116,7 +116,7 @@ class Top5CategoricalAccuracy(TopKCategoricalAccuracy):
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.],
|
|
|
|
|
>>> [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
|
|
|
|
|
... [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32)
|
|
|
|
|
>>> y = Tensor(np.array([2, 0, 1]), mindspore.float32)
|
|
|
|
|
>>> topk = nn.Top5CategoricalAccuracy()
|
|
|
|
|
>>> topk.clear()
|
|
|
|
|