|
|
|
@ -312,7 +312,7 @@ def train():
|
|
|
|
|
args.logger.info('iter[{}], shape{}'.format(i, input_shape[0]))
|
|
|
|
|
shape_record.set(input_shape)
|
|
|
|
|
|
|
|
|
|
images = Tensor(images)
|
|
|
|
|
images = Tensor.from_numpy(images)
|
|
|
|
|
annos = data["annotation"]
|
|
|
|
|
if args.group_size == 1:
|
|
|
|
|
batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1, batch_gt_box2 = \
|
|
|
|
@ -321,12 +321,12 @@ def train():
|
|
|
|
|
batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1, batch_gt_box2 = \
|
|
|
|
|
batch_preprocess_true_box_single(annos, config, input_shape)
|
|
|
|
|
|
|
|
|
|
batch_y_true_0 = Tensor(batch_y_true_0)
|
|
|
|
|
batch_y_true_1 = Tensor(batch_y_true_1)
|
|
|
|
|
batch_y_true_2 = Tensor(batch_y_true_2)
|
|
|
|
|
batch_gt_box0 = Tensor(batch_gt_box0)
|
|
|
|
|
batch_gt_box1 = Tensor(batch_gt_box1)
|
|
|
|
|
batch_gt_box2 = Tensor(batch_gt_box2)
|
|
|
|
|
batch_y_true_0 = Tensor.from_numpy(batch_y_true_0)
|
|
|
|
|
batch_y_true_1 = Tensor.from_numpy(batch_y_true_1)
|
|
|
|
|
batch_y_true_2 = Tensor.from_numpy(batch_y_true_2)
|
|
|
|
|
batch_gt_box0 = Tensor.from_numpy(batch_gt_box0)
|
|
|
|
|
batch_gt_box1 = Tensor.from_numpy(batch_gt_box1)
|
|
|
|
|
batch_gt_box2 = Tensor.from_numpy(batch_gt_box2)
|
|
|
|
|
|
|
|
|
|
input_shape = Tensor(tuple(input_shape[::-1]), ms.float32)
|
|
|
|
|
loss = network(images, batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1,
|
|
|
|
|