!7610 add export for mobilenetv2, mobilenetv3, resnext50
Merge pull request !7610 from zhaoting/mobilenetpull/7610/MERGE
commit
d96193f62e
@ -0,0 +1,35 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
mobilenetv2 export mindir.
|
||||
"""
|
||||
import numpy as np
|
||||
from mindspore import Tensor
|
||||
from mindspore.train.serialization import export
|
||||
from src.config import set_config
|
||||
from src.args import export_parse_args
|
||||
from src.models import define_net, load_ckpt
|
||||
from src.utils import set_context
|
||||
|
||||
if __name__ == '__main__':
|
||||
args_opt = export_parse_args()
|
||||
cfg = set_config(args_opt)
|
||||
set_context(cfg)
|
||||
_, _, net = define_net(cfg, args_opt.is_training)
|
||||
|
||||
load_ckpt(net, args_opt.pretrain_ckpt)
|
||||
input_shp = [1, 3, cfg.image_height, cfg.image_width]
|
||||
input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32))
|
||||
export(net, input_array, file_name=cfg.export_file, file_format=cfg.export_format)
|
@ -0,0 +1,45 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
mobilenetv3 export mindir.
|
||||
"""
|
||||
import argparse
|
||||
import numpy as np
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
||||
from src.config import config_gpu
|
||||
from src.mobilenetV3 import mobilenet_v3_large
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--checkpoint_path', type=str, required=True, help='Checkpoint file path')
|
||||
parser.add_argument('--device_target', type=str, default="GPU", help='run device_target')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
if __name__ == '__main__':
|
||||
cfg = None
|
||||
if args_opt.device_target == "GPU":
|
||||
cfg = config_gpu
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
else:
|
||||
raise ValueError("Unsupported device_target.")
|
||||
|
||||
net = mobilenet_v3_large(num_classes=cfg.num_classes, activation="Softmax")
|
||||
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
input_shp = [1, 3, cfg.image_height, cfg.image_width]
|
||||
input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32))
|
||||
export(net, input_array, file_name=cfg.export_file, file_format=cfg.export_format)
|
@ -0,0 +1,56 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
resnext export mindir.
|
||||
"""
|
||||
import argparse
|
||||
import numpy as np
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
||||
from src.config import config
|
||||
from src.image_classification import get_network
|
||||
|
||||
|
||||
def parse_args():
|
||||
"""parse_args"""
|
||||
parser = argparse.ArgumentParser('mindspore classification test')
|
||||
parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform')
|
||||
|
||||
parser.add_argument('--pretrained', type=str, required=True, help='fully path of pretrained model to load. '
|
||||
'If it is a direction, it will test all ckpt')
|
||||
|
||||
args, _ = parser.parse_known_args()
|
||||
args.image_size = config.image_size
|
||||
args.num_classes = config.num_classes
|
||||
args.backbone = config.backbone
|
||||
|
||||
args.image_size = list(map(int, config.image_size.split(',')))
|
||||
args.image_height = args.image_size[0]
|
||||
args.image_width = args.image_size[1]
|
||||
args.export_format = config.export_format
|
||||
args.export_file = config.export_file
|
||||
return args
|
||||
|
||||
if __name__ == '__main__':
|
||||
args_export = parse_args()
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args_export.platform)
|
||||
|
||||
net = get_network(args_export.backbone, num_classes=args_export.num_classes, platform=args_export.platform)
|
||||
|
||||
param_dict = load_checkpoint(args_export.pretrained)
|
||||
load_param_into_net(net, param_dict)
|
||||
input_shp = [1, 3, args_export.image_height, args_export.image_width]
|
||||
input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32))
|
||||
export(net, input_array, file_name=args_export.export_file, file_format=args_export.export_format)
|
Loading…
Reference in new issue