zeroslike dynamic shape no opt

fix ci

fix ci

fix ci

fix ci
pull/9694/head
Peilin Wang 4 years ago
parent 29db53c2ba
commit d9fb28b9fc

@ -0,0 +1,41 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cstdint>
#include "backend/kernel_compiler/gpu/arrays/zeroslike_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
ZerosLikeGpuKernel, bool)
MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
ZerosLikeGpuKernel, int8_t)
MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
ZerosLikeGpuKernel, uint8_t)
MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
ZerosLikeGpuKernel, int32_t)
MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
ZerosLikeGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ZerosLikeGpuKernel, float)
} // namespace kernel
} // namespace mindspore

@ -0,0 +1,88 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_ZEROSLIKE_GPU_KERNEL_H
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_ZEROSLIKE_GPU_KERNEL_H
#include <vector>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename T>
class ZerosLikeGpuKernel : public GpuKernel {
public:
ZerosLikeGpuKernel() { ResetResource(); }
~ZerosLikeGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *output_device_address = GetDeviceAddress<T>(outputs, 0);
CHECK_CUDA_RET_WITH_EXCEPT(
kernel_node_,
// have to use a float literal instead of an int literal beacuse of ambigious half() overload.
cudaMemsetAsync(output_device_address, static_cast<T>(0.0), input_size_ * sizeof(T),
reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemset failed");
return true;
}
bool Init(const CNodePtr &kernel_node) override {
kernel_node_ = kernel_node;
std::vector<size_t> input_shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
for (size_t i = 0; i < input_shape.size(); i++) {
input_size_ *= input_shape[i];
}
InitSizeLists();
return true;
}
void ResetResource() noexcept override {
kernel_node_ = nullptr;
input_size_ = 1;
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();
}
protected:
void InitSizeLists() override {
// allocate space for input even though we don't need to do anything with the input
input_size_list_.push_back(input_size_ * sizeof(T));
output_size_list_.push_back(input_size_ * sizeof(T));
}
private:
CNodePtr kernel_node_;
size_t input_size_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_ARRAYS_ZEROSLIKE_GPU_KERNEL_H

@ -195,6 +195,13 @@ class ZeroLikeFillZero : public AnfVisitor {
TypePtr tensor_type_ptr = tensor_abstract->element()->BuildType();
std::vector<int64_t> tensor_shape = tensor_abstract->shape()->shape();
// if shape is unknown, don't optimize this operator away
for (const int64_t &dimension : tensor_shape) {
if (dimension < 0) {
return node;
}
}
tensor::TensorPtr new_tensor_ptr = std::make_shared<tensor::Tensor>(tensor_type_ptr->type_id(), tensor_shape);
size_t mem_size = GetTypeByte(tensor_type_ptr) * LongToSize(new_tensor_ptr->ElementsNum());
char *data = reinterpret_cast<char *>(new_tensor_ptr->data_c());

@ -275,9 +275,9 @@ AbstractBasePtr InferImplSplit(const AnalysisEnginePtr &, const PrimitivePtr &pr
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplSequenceMask(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplAddN(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
template <typename T>
AbstractBasePtr InferTupleOrListOrDictLen(const std::string &op_name, const AbstractBasePtrList &args_spec_list) {
// Inputs: a tuple or list or dict.

@ -767,9 +767,21 @@ AbstractBasePtr InferImplDynamicShape(const AnalysisEnginePtr &, const Primitive
AbstractBasePtr InferImplZerosLike(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list) {
// Inputs: a tensor.
CheckArgsSize(primitive->name(), args_spec_list, 1);
return args_spec_list[0]->Broaden();
const std::string op_name = primitive->name();
CheckArgsSize(op_name, args_spec_list, 1);
AbstractTensorPtr input_x = CheckArg<AbstractTensor>(op_name, args_spec_list, 0);
ShapeVector x_shape = input_x->shape()->shape();
ShapeVector x_shape_min = input_x->shape()->min_shape();
if (x_shape_min.empty()) {
x_shape_min = x_shape;
}
ShapeVector x_shape_max = input_x->shape()->max_shape();
if (x_shape_max.empty()) {
x_shape_max = x_shape;
}
ShapePtr output_shape = std::make_shared<Shape>(x_shape, x_shape_min, x_shape_max);
return std::make_shared<AbstractTensor>(input_x->element(), output_shape);
}
AbstractBasePtr InferImplTranspose(const AnalysisEnginePtr &, const PrimitivePtr &primitive,

@ -20,6 +20,7 @@ import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
@ -74,3 +75,96 @@ def test_ZerosLike():
error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1)
assert output1.shape == expect1.shape
class ZerosLikeDynamicNet(nn.Cell):
def __init__(self):
super(ZerosLikeDynamicNet, self).__init__()
self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape()
self.zeros_like = P.ZerosLike()
def construct(self, x):
converted_to_dynamic = self.gpu_convert_to_dynamic_shape(x)
return self.zeros_like(converted_to_dynamic)
def zeros_like_dynamic(x):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = ZerosLikeDynamicNet()
return net(x)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_bool():
x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.bool))
output = zeros_like_dynamic(x)
expected = np.zeros([3, 4, 1, 2, 5])
np.testing.assert_array_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_int8():
x = Tensor(np.arange(24).reshape(1, 4, 1, 6).astype(np.int8))
output = zeros_like_dynamic(x)
expected = np.zeros([1, 4, 1, 6])
print(output)
np.testing.assert_array_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_uint8():
x = Tensor(np.arange(30).reshape(3, 2, 5).astype(np.uint8))
output = zeros_like_dynamic(x)
expected = np.zeros([3, 2, 5])
np.testing.assert_array_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_int32():
x = Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(np.int32))
output = zeros_like_dynamic(x)
expected = np.zeros([2, 2, 2, 2])
np.testing.assert_array_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_float16():
x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.float16))
output = zeros_like_dynamic(x)
expected = np.zeros([3, 4, 1, 2, 5])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_float32():
x = Tensor(np.arange(63).reshape(3, 7, 3).astype(np.float32))
output = zeros_like_dynamic(x)
expected = np.zeros([3, 7, 3])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_zeros_like_dynamic_multiple_inputs():
net = ZerosLikeDynamicNet()
x = Tensor(np.arange(4).reshape(4).astype(np.float32))
output = net(x)
expected = np.zeros([4])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
x = Tensor(np.arange(8).reshape(2, 1, 2, 2).astype(np.uint8))
output = net(x)
expected = np.zeros([2, 1, 2, 2])
np.testing.assert_array_equal(output.asnumpy(), expected)
x = Tensor(np.arange(1).reshape(1).astype(np.float16))
output = net(x)
expected = np.zeros([1])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)

Loading…
Cancel
Save