!4670 [MS][LITE][Develop]add op_batchnorm_int8 and testcase
Merge pull request !4670 from songhonglei413/roipull/4670/MERGE
commit
dc685392b4
@ -0,0 +1,168 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/runtime/kernel/arm/int8/batchnorm_int8.h"
|
||||
#include <math.h>
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "include/errorcode.h"
|
||||
#include "src/runtime/runtime_api.h"
|
||||
#include "src/runtime/kernel/arm/nnacl/batchnorm_parameter.h"
|
||||
|
||||
using mindspore::kernel::KERNEL_ARCH::kCPU;
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_BatchNorm;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
BatchnormInt8CPUKernel::~BatchnormInt8CPUKernel() {
|
||||
if (alpha_addr_ != nullptr) {
|
||||
free(alpha_addr_);
|
||||
alpha_addr_ = nullptr;
|
||||
}
|
||||
if (beta_addr_ != nullptr) {
|
||||
free(beta_addr_);
|
||||
beta_addr_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
int BatchnormInt8CPUKernel::InitConstTensor() {
|
||||
auto input = in_tensors_[0];
|
||||
auto mean = in_tensors_[1];
|
||||
auto variance = in_tensors_[2];
|
||||
auto output = out_tensors_[0];
|
||||
|
||||
auto mean_ptr = reinterpret_cast<int8_t *>(mean->Data());
|
||||
auto var_ptr = reinterpret_cast<int8_t *>(variance->Data());
|
||||
alpha_addr_ = reinterpret_cast<float *>(malloc(mean->ElementsNum() * sizeof(float)));
|
||||
if (alpha_addr_ == nullptr) {
|
||||
MS_LOG(ERROR) << "Malloc buffer failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
beta_addr_ = reinterpret_cast<float *>(malloc(variance->ElementsNum() * sizeof(float)));
|
||||
if (beta_addr_ == nullptr) {
|
||||
MS_LOG(ERROR) << "Malloc buffer failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
// compute alpha, beta;
|
||||
// 0. tmp = (S4 * Sqrt(e + S3 * (q3 - Z3)));
|
||||
// 1. A = S1 / tmp;
|
||||
// 2. B = Z4 - (A1 * Z1) -((S2 * (q2 - Z2)) / tmp;
|
||||
auto eps = batchnorm_param_->epsilon_;
|
||||
auto zp_in = input->GetQuantParams().front().zeroPoint;
|
||||
auto zp_mean = mean->GetQuantParams().front().zeroPoint;
|
||||
auto zp_var = variance->GetQuantParams().front().zeroPoint;
|
||||
auto zp_out = output->GetQuantParams().front().zeroPoint;
|
||||
auto s_in = input->GetQuantParams().front().scale;
|
||||
auto s_mean = mean->GetQuantParams().front().scale;
|
||||
auto s_var = variance->GetQuantParams().front().scale;
|
||||
auto s_out = output->GetQuantParams().front().scale;
|
||||
|
||||
for (int i = 0; i < batchnorm_param_->channel_; ++i) {
|
||||
float tmp = s_out * sqrt(eps + s_var * (var_ptr[i] - zp_var));
|
||||
float tmp_a = s_in / tmp;
|
||||
float tmp_b = zp_out - tmp_a * zp_in - (s_mean * (mean_ptr[i] - zp_mean)) / tmp;
|
||||
alpha_addr_[i] = tmp_a;
|
||||
beta_addr_[i] = tmp_b;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BatchnormInt8CPUKernel::Init() {
|
||||
auto input_shapes = in_tensors_[0]->shape();
|
||||
auto n_dim = input_shapes.size();
|
||||
batchnorm_param_->channel_ = input_shapes[n_dim - 1];
|
||||
batchnorm_param_->unit_ = 1;
|
||||
for (int i = 0; i < n_dim - 1; i++) {
|
||||
batchnorm_param_->unit_ *= input_shapes[i];
|
||||
}
|
||||
batchnorm_param_->op_parameter_.thread_num_ =
|
||||
MSMIN(batchnorm_param_->op_parameter_.thread_num_, batchnorm_param_->channel_);
|
||||
|
||||
auto ret = InitConstTensor();
|
||||
if (ret != 0) {
|
||||
MS_LOG(ERROR) << "Batchnorm fp32 InitConstTensor failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BatchnormInt8CPUKernel::ReSize() {
|
||||
auto input_shapes = in_tensors_[0]->shape();
|
||||
batchnorm_param_->unit_ = 1;
|
||||
for (int i = 0; i < input_shapes.size() - 1; i++) {
|
||||
batchnorm_param_->unit_ *= input_shapes[i];
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BatchnormInt8CPUKernel::DoExecute(int task_id) {
|
||||
BatchNormInt8(out_addr_, in_addr_, alpha_addr_, beta_addr_, task_id, batchnorm_param_);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BatchNormInt8Run(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
|
||||
auto g_kernel = reinterpret_cast<BatchnormInt8CPUKernel *>(cdata);
|
||||
auto ret = g_kernel->DoExecute(task_id);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "BatchnormRun error task_id[" << task_id << "] error_code[" << ret << "]";
|
||||
return ret;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int BatchnormInt8CPUKernel::Run() {
|
||||
auto prepare_ret = Prepare();
|
||||
if (prepare_ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Prepare fail! Ret error code: " << prepare_ret;
|
||||
return prepare_ret;
|
||||
}
|
||||
in_addr_ = reinterpret_cast<int8_t *>(in_tensors_.at(0)->Data());
|
||||
out_addr_ = reinterpret_cast<int8_t *>(out_tensors_.at(0)->Data());
|
||||
|
||||
int ret = LiteBackendParallelLaunch(BatchNormInt8Run, this, batchnorm_param_->op_parameter_.thread_num_);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "BatchnormRun error error_code[" << ret << "]";
|
||||
return ret;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuBatchnormInt8KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const lite::Context *ctx,
|
||||
const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
MS_ASSERT(opParameter != nullptr);
|
||||
MS_ASSERT(desc.type == schema::PrimitiveType_BatchNorm);
|
||||
auto *kernel = new (std::nothrow) BatchnormInt8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new BatchnormInt8CPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_BatchNorm, CpuBatchnormInt8KernelCreator)
|
||||
} // namespace mindspore::kernel
|
@ -0,0 +1,54 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_BATCHNORM_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_BATCHNORM_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "include/context.h"
|
||||
#include "src/runtime/kernel/arm/nnacl/int8/batchnorm_int8.h"
|
||||
#include "src/runtime/kernel/arm/nnacl/batchnorm_parameter.h"
|
||||
|
||||
using mindspore::lite::Context;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class BatchnormInt8CPUKernel : public LiteKernel {
|
||||
public:
|
||||
BatchnormInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs, const Context *ctx,
|
||||
const mindspore::lite::PrimitiveC *primitive)
|
||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
|
||||
batchnorm_param_ = reinterpret_cast<BatchNormParameter *>(parameter);
|
||||
}
|
||||
~BatchnormInt8CPUKernel() override;
|
||||
|
||||
int Init() override;
|
||||
int ReSize() override;
|
||||
int Run() override;
|
||||
int InitConstTensor();
|
||||
int DoExecute(int tid);
|
||||
|
||||
private:
|
||||
int8_t *in_addr_ = nullptr;
|
||||
int8_t *out_addr_ = nullptr;
|
||||
float *alpha_addr_ = nullptr;
|
||||
float *beta_addr_ = nullptr;
|
||||
BatchNormParameter *batchnorm_param_;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_BATCHNORM_H_
|
@ -0,0 +1,29 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_BATCHNORM_PARAMETER_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_BATCHNORM_PARAMETER_H_
|
||||
|
||||
#include "nnacl/op_base.h"
|
||||
|
||||
typedef struct BatchNormParameter {
|
||||
OpParameter op_parameter_;
|
||||
float epsilon_;
|
||||
int unit_;
|
||||
int channel_;
|
||||
} BatchNormParameter;
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_BATCHNORM_PARAMETER_H_
|
@ -0,0 +1,31 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "nnacl/int8/batchnorm_int8.h"
|
||||
#include <math.h>
|
||||
#include "nnacl/batchnorm_parameter.h"
|
||||
|
||||
void BatchNormInt8(int8_t *output_ptr, const int8_t *input_ptr, const float *alpha_ptr, const float *beta_ptr,
|
||||
int task_id, BatchNormParameter *param) {
|
||||
for (int c = task_id; c < param->channel_; c += param->op_parameter_.thread_num_) {
|
||||
for (int u = 0; u < param->unit_; u++) {
|
||||
int32_t output_tmp = round(input_ptr[u * param->channel_ + c] * alpha_ptr[c] + beta_ptr[c]);
|
||||
output_tmp = output_tmp > 127 ? 127 : output_tmp;
|
||||
output_tmp = output_tmp < -128 ? -128 : output_tmp;
|
||||
output_ptr[u * param->channel_ + c] = (int8_t)output_tmp;
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,34 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_INT8_BATCHNORM_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_INT8_BATCHNORM_H_
|
||||
|
||||
#include "nnacl/op_base.h"
|
||||
#include "nnacl/batchnorm_parameter.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
void BatchNormInt8(int8_t *output_ptr, const int8_t *input_ptr, const float *alpha_ptr, const float *beta_ptr,
|
||||
int task_id, BatchNormParameter *param);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_INT8_BATCHNORM_H_
|
@ -0,0 +1,107 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <iostream>
|
||||
#include "mindspore/core/utils/log_adapter.h"
|
||||
#include "common/common_test.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/arm/nnacl/batchnorm_parameter.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/arm/nnacl/int8/batchnorm_int8.h"
|
||||
#include "mindspore/lite/src/kernel_registry.h"
|
||||
#include "mindspore/lite/src/lite_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
class TestBatchnormInt8 : public mindspore::CommonTest {
|
||||
public:
|
||||
TestBatchnormInt8() {}
|
||||
};
|
||||
|
||||
TEST_F(TestBatchnormInt8, BNTest) {
|
||||
std::vector<int8_t> in_data = {11, 41, 21, 51, 31, 61, -11, -41, -21, -51, -31, -61};
|
||||
std::vector<int8_t> in_data1 = {4, 14};
|
||||
std::vector<int8_t> in_data2 = {29, 39};
|
||||
std::vector<lite::tensor::Tensor *> inputs_tensor;
|
||||
std::vector<lite::tensor::Tensor *> outputs_tensor;
|
||||
|
||||
BatchNormParameter op_param;
|
||||
op_param.op_parameter_.type_ = schema::PrimitiveType_BatchNorm;
|
||||
op_param.epsilon_ = 0.001f;
|
||||
|
||||
std::vector<int> shape = {1, 1, 6, 2};
|
||||
|
||||
lite::tensor::QuantArg input_quant_arg;
|
||||
input_quant_arg.scale = 0.1;
|
||||
input_quant_arg.zeroPoint = 1;
|
||||
lite::tensor::QuantArg input_quant_arg_1;
|
||||
input_quant_arg_1.scale = 0.05;
|
||||
input_quant_arg_1.zeroPoint = 2;
|
||||
lite::tensor::QuantArg input_quant_arg_2;
|
||||
input_quant_arg_2.scale = 0.1;
|
||||
input_quant_arg_2.zeroPoint = -1;
|
||||
lite::tensor::QuantArg output_quant_arg;
|
||||
output_quant_arg.scale = 1;
|
||||
output_quant_arg.zeroPoint = 0;
|
||||
|
||||
lite::tensor::Tensor input0_tensor;
|
||||
lite::tensor::Tensor input1_tensor;
|
||||
lite::tensor::Tensor input2_tensor;
|
||||
inputs_tensor.push_back(&input0_tensor);
|
||||
inputs_tensor.push_back(&input1_tensor);
|
||||
inputs_tensor.push_back(&input2_tensor);
|
||||
input0_tensor.SetData(in_data.data());
|
||||
input1_tensor.SetData(in_data1.data());
|
||||
input2_tensor.SetData(in_data2.data());
|
||||
input0_tensor.set_shape(shape);
|
||||
input1_tensor.set_shape({2});
|
||||
input2_tensor.set_shape({2});
|
||||
input0_tensor.AddQuantParam(input_quant_arg);
|
||||
input1_tensor.AddQuantParam(input_quant_arg_1);
|
||||
input2_tensor.AddQuantParam(input_quant_arg_2);
|
||||
|
||||
std::vector<int8_t> output(12);
|
||||
// std::vector<int8_t> corr_out1 = {5, 17, 11, 22, 17, 27, -6, -23, -12, -28, -18, -33};
|
||||
std::vector<int8_t> corr_out = {1, 2, 1, 2, 2, 3, -1, -2, -1, -3, -2, -3};
|
||||
|
||||
lite::tensor::Tensor output0_tensor;
|
||||
outputs_tensor.push_back(&output0_tensor);
|
||||
output0_tensor.SetData(output.data());
|
||||
output0_tensor.set_shape(shape);
|
||||
output0_tensor.AddQuantParam(output_quant_arg);
|
||||
|
||||
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_BatchNorm};
|
||||
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
|
||||
ASSERT_NE(creator, nullptr);
|
||||
lite::Context ctx;
|
||||
ctx.thread_num_ = 3;
|
||||
kernel::LiteKernel *kernel =
|
||||
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), &ctx, desc, nullptr);
|
||||
ASSERT_NE(kernel, nullptr);
|
||||
auto output_tensor_shape = output0_tensor.shape();
|
||||
kernel->Run();
|
||||
|
||||
printf("==================output data=================\n");
|
||||
for (int i = 0; i < output0_tensor.ElementsNum(); i++) {
|
||||
printf("%d, ", output[i]);
|
||||
}
|
||||
std::cout << std::endl;
|
||||
CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001);
|
||||
|
||||
input0_tensor.SetData(nullptr);
|
||||
input1_tensor.SetData(nullptr);
|
||||
input2_tensor.SetData(nullptr);
|
||||
output0_tensor.SetData(nullptr);
|
||||
MS_LOG(INFO) << "TestBathNormFp32 accuracy passed";
|
||||
}
|
||||
|
||||
} // namespace mindspore
|
Loading…
Reference in new issue