updata doc for Parameter & fix codex

pull/4823/head
Wei Luning 5 years ago
parent ccd9ef29e7
commit dde5a1bb48

@ -216,8 +216,10 @@ std::string DataDumpParser::GetOpOverflowBinPath(uint32_t graph_id, uint32_t dev
std::string bin_path = "/var/log/npu/ide_daemon/dump";
const char *dump_data_path = std::getenv("DATA_DUMP_PATH");
bin_path.append(dump_data_path);
bin_path.append("_");
if (dump_data_path != nullptr) {
bin_path.append(dump_data_path);
bin_path.append("_");
}
bin_path.append(std::to_string(device_id));
bin_path.append("/");
bin_path.append(net_name_);

@ -36,6 +36,9 @@ class SwitchLayerDeferInline : public AnfVisitor {
auto tuple = dyn_cast<abstract::AbstractTuple>(cnode->inputs()[2]->abstract());
for (auto elem : tuple->elements()) {
auto abstract = dyn_cast<abstract::FuncGraphAbstractClosure>(elem);
if (abstract == nullptr) {
return nullptr;
}
*(abstract->func_graph()->switch_layer_input()) = true;
}
return nullptr;

@ -173,6 +173,5 @@ bool MergeDuplicateGraphs(const FuncGraphManagerPtr manager) {
}
return true;
}
} // namespace pipeline
} // namespace mindspore

@ -31,7 +31,6 @@ void TryToDoReplace(FuncGraphManager *manager, const AnfNodePtr &node, HashCache
size_t HashOfGraph(const FuncGraphPtr &fg);
bool IsCNodeGraph(const AnfNodePtr &node);
bool MergeDuplicateGraphs(const FuncGraphManagerPtr manager);
} // namespace pipeline
} // namespace mindspore

@ -473,12 +473,12 @@ bool IsGraphOutputValueNodeOrParameter(const AnfNodePtr &output, const py::tuple
}
return false;
}
namespace {
// Isomorphism
static bool SameNode(const AnfNodePtr &node1, const AnfNodePtr &node2, FuncGraphPairMapEquiv *equiv_func_graph,
NodeMapEquiv *const equiv_node);
static bool SameNodeShallow(const AnfNodePtr &node1, const AnfNodePtr &node2, FuncGraphPairMapEquiv *equiv_func_graph,
NodeMapEquiv *const equiv_node) {
bool SameNode(const AnfNodePtr &node1, const AnfNodePtr &node2, FuncGraphPairMapEquiv *equiv_func_graph,
NodeMapEquiv *const equiv_node);
bool SameNodeShallow(const AnfNodePtr &node1, const AnfNodePtr &node2, FuncGraphPairMapEquiv *equiv_func_graph,
NodeMapEquiv *const equiv_node) {
if (equiv_node == nullptr) {
MS_LOG(ERROR) << "Invalid equiv_node";
return false;
@ -534,8 +534,8 @@ bool SameNode(const AnfNodePtr &node1, const AnfNodePtr &node2, FuncGraphPairMap
return SameNodeShallow(node1, node2, equiv_func_graph, equiv_node);
}
static bool SameSubgraph(AnfNodePtr root1, AnfNodePtr root2, FuncGraphPairMapEquiv *equiv_func_graph,
NodeMapEquiv *const equiv_node) {
bool SameSubgraph(AnfNodePtr root1, AnfNodePtr root2, FuncGraphPairMapEquiv *equiv_func_graph,
NodeMapEquiv *const equiv_node) {
std::unordered_set<AnfNodePtr> done;
std::stack<std::pair<AnfNodePtr, AnfNodePtr>> todo;
@ -576,6 +576,7 @@ static bool SameSubgraph(AnfNodePtr root1, AnfNodePtr root2, FuncGraphPairMapEqu
}
return true;
}
} // namespace
bool Isomorphic(FuncGraphPtr fg1, FuncGraphPtr fg2, FuncGraphPairMapEquiv *equiv_func_graph,
NodeMapEquiv *const equiv_node) {

@ -40,19 +40,18 @@ class Parameter(MetaTensor):
After initialized `Parameter` is a subtype of `Tensor`.
In auto_parallel mode of "semi_auto_parallel" and "auto_parallel", if init `Parameter` by
a `Initializer`, the type of Parameter will be a `MetaTensor` not a `Tensor`. `MetaTensor`
only save the shape type info of a tensor with no memory usage. The shape can be change while
an `Initializer`, the type of Parameter will be `MetaTensor` not `Tensor`. `MetaTensor`
only saves the shape and type info of a tensor with no memory usage. The shape can be changed while
compile for auto-parallel. Call `init_data` will return a Tensor Parameter with initialized data.
Note:
Each parameter of Cell is represented by Parameter class.
Args:
default_input (Union[Tensor, Initializer]): Parameter data, when `default_input` is` Initializer`,
the data stored by Parameter is `MetaTensor`, otherwise it is `Tensor`.
default_input (Union[Tensor, Initializer, Number]): Parameter data, to be set initialized.
name (str): Name of the child parameter.
requires_grad (bool): True if the parameter requires gradient. Default: True.
layerwise_parallel (bool): A kind of model parallel mode. When layerwise_parallel is true in paralle mode,
layerwise_parallel (bool): A kind of model parallel mode. When layerwise_parallel is true in parallel mode,
broadcast and gradients communication would not be applied to parameters. Default: False.
Example:

@ -580,7 +580,6 @@ class PConstant : public PBase<PConstant<T> > {
return nullptr;
}
auto value = node->cast<ValueNodePtr>()->value();
if (!value->isa<tensor::Tensor>()) {
return nullptr;
}
@ -747,7 +746,6 @@ class PConstant : public PBase<PConstant<T> > {
std::vector<int> tensor_out_shape = tensor_3_abstract->shape()->shape();
int data_out_size = std::accumulate(tensor_out_shape.begin(), tensor_out_shape.end(), 1, std::multiplies<int>());
if ((tensor_ptr_1->DataSize() > 1) && (tensor_ptr_1->DataSize() != data_out_size)) {
return nullptr;
}

Loading…
Cancel
Save