parent
bc42685436
commit
ddedc41613
@ -0,0 +1,48 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""SparseApplyAdagradV2D op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
sparse_apply_adagrad_v2_d_op_info = TBERegOp("SparseApplyAdagradV2") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("sparse_apply_adagrad_v2_d.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("sparse_apply_adagrad_v2_d") \
|
||||
.partial_flag(True) \
|
||||
.attr("lr", "required", "float", "all") \
|
||||
.attr("epsilon", "required", "float", "all") \
|
||||
.attr("use_locking", "optional", "bool", "all") \
|
||||
.attr("update_slots", "optional", "bool", "all") \
|
||||
.input(0, "var", False, "required", "all") \
|
||||
.input(1, "accum", False, "required", "all") \
|
||||
.input(2, "grad", False, "required", "all") \
|
||||
.input(3, "indices", False, "required", "all") \
|
||||
.output(0, "var", False, "required", "all") \
|
||||
.output(1, "accum", False, "required", "all") \
|
||||
.dtype_format(DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.I32_NCHW,
|
||||
DataType.F32_NCHW, DataType.F32_NCHW) \
|
||||
.dtype_format(DataType.F32_NHWC, DataType.F32_NHWC, DataType.F32_NHWC, DataType.I32_NHWC,
|
||||
DataType.F32_NHWC, DataType.F32_NHWC) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.I32_Default,
|
||||
DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(sparse_apply_adagrad_v2_d_op_info)
|
||||
def _sparse_apply_adagrad_v2_tbe():
|
||||
"""SparseApplyAdagradV2D TBE register"""
|
||||
return
|
@ -0,0 +1,52 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""SparseApplyFtrlV2D op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
sparse_apply_ftrl_v2_d_op_info = TBERegOp("SparseApplyFtrlV2") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("sparse_apply_ftrl_v2_d.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("sparse_apply_ftrl_v2_d") \
|
||||
.partial_flag(True) \
|
||||
.attr("lr", "required", "float", "all") \
|
||||
.attr("l1", "required", "float", "all") \
|
||||
.attr("l2", "required", "float", "all") \
|
||||
.attr("l2_shrinkage", "required", "float", "all") \
|
||||
.attr("lr_power", "required", "float", "all") \
|
||||
.attr("use_locking", "optional", "bool", "true,false", "false") \
|
||||
.input(0, "var", False, "required", "all") \
|
||||
.input(1, "accum", False, "required", "all") \
|
||||
.input(2, "linear", False, "required", "all") \
|
||||
.input(3, "grad", False, "required", "all") \
|
||||
.input(4, "indices", False, "required", "all") \
|
||||
.output(0, "var", False, "required", "all") \
|
||||
.output(1, "accum", False, "required", "all") \
|
||||
.output(2, "linear", False, "required", "all") \
|
||||
.dtype_format(DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW,
|
||||
DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \
|
||||
.dtype_format(DataType.F32_NHWC, DataType.F32_NHWC, DataType.F32_NHWC, DataType.F32_NHWC,
|
||||
DataType.I32_NHWC, DataType.F32_NHWC, DataType.F32_NHWC, DataType.F32_NHWC) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
|
||||
DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(sparse_apply_ftrl_v2_d_op_info)
|
||||
def _sparse_apply_ftrl_v2_tbe():
|
||||
"""SparseApplyFtrlV2D TBE register"""
|
||||
return
|
Loading…
Reference in new issue