parent
5a03bd8077
commit
def8573275
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,36 @@
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, context
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import WithLossCell, TrainOneStepCell
|
||||
from mindspore.nn import Momentum
|
||||
from mindspore.parallel._cost_model_context import set_cost_model_context
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, input_ch, out_ch):
|
||||
super(Net, self).__init__()
|
||||
self.dense = nn.Dense(input_ch, out_ch)
|
||||
self.relu = P.ReLU()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.dense(x)
|
||||
x = self.relu(x)
|
||||
return x
|
||||
|
||||
def test_inference_phase():
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
set_cost_model_context(run_phase=1)
|
||||
|
||||
net = Net(512, 128)
|
||||
predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.001)
|
||||
label = Tensor(np.ones([64, 128]).astype(np.float32))
|
||||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
optimizer = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
net_with_loss = WithLossCell(net, loss)
|
||||
train_network = TrainOneStepCell(net_with_loss, optimizer)
|
||||
train_network.set_train()
|
||||
|
||||
output = train_network(predict, label)
|
Loading…
Reference in new issue