parent
a301fc1757
commit
e151b0c35b
@ -0,0 +1,103 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/runtime/kernel/arm/base/softmax_base.h"
|
||||
#include <vector>
|
||||
#include "src/runtime/kernel/arm/int8/softmax_int8.h"
|
||||
#include "src/runtime/kernel/arm/fp32/softmax.h"
|
||||
#include "src/runtime/kernel/arm/opclib/fp32/softmax.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_factory.h"
|
||||
#include "include/errorcode.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::lite::RET_NULL_PTR;
|
||||
using mindspore::schema::PrimitiveType_SoftMax;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
int SoftmaxBaseCPUKernel::Init() {
|
||||
if (softmax_param_ == nullptr) {
|
||||
MS_LOG(ERROR) << "SoftmaxParameter nullptr";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
||||
auto input_tensor = inputs_.front();
|
||||
auto in_shape = input_tensor->shape();
|
||||
auto in_dims = in_shape.size();
|
||||
int ele_size = 1;
|
||||
softmax_param_->n_dim_ = in_dims;
|
||||
for (size_t i = 0; i < in_dims; i++) {
|
||||
softmax_param_->input_shape_[i] = in_shape[i];
|
||||
ele_size *= in_shape[i];
|
||||
}
|
||||
softmax_param_->element_size_ = ele_size;
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuSoftmaxInt8KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const lite::Context *ctx,
|
||||
const kernel::KernelKey &desc) {
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
MS_ASSERT(desc.type == schema::PrimitiveType_SoftMax);
|
||||
auto *kernel = new (std::nothrow) SoftmaxInt8CPUKernel(opParameter, inputs, outputs, ctx);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new SoftmaxCPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuSoftmaxFp32KernelCreator(const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs,
|
||||
OpParameter *opParameter, const lite::Context *ctx,
|
||||
const kernel::KernelKey &desc) {
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
MS_ASSERT(desc.type == schema::PrimitiveType_SoftMax);
|
||||
auto *kernel = new (std::nothrow) SoftmaxCPUKernel(opParameter, inputs, outputs, ctx);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new SoftmaxCPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_SoftMax, CpuSoftmaxInt8KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_SoftMax, CpuSoftmaxFp32KernelCreator)
|
||||
} // namespace mindspore::kernel
|
@ -0,0 +1,46 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SOFTMAX_BASE_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SOFTMAX_BASE_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "src/runtime/kernel/arm/opclib/softmax_parameter.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class SoftmaxBaseCPUKernel : public LiteKernel {
|
||||
public:
|
||||
SoftmaxBaseCPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx)
|
||||
: LiteKernel(parameter, inputs, outputs), ctx_(ctx), thread_count_(ctx->thread_num_) {
|
||||
opParameter->thread_num_ = ctx->thread_num_;
|
||||
softmax_param_ = reinterpret_cast<SoftmaxParameter *>(opParameter);
|
||||
}
|
||||
~SoftmaxBaseCPUKernel() = default;
|
||||
|
||||
int Init() override;
|
||||
int ReSize() override { return 0; }
|
||||
int Run() override { return 0; }
|
||||
|
||||
protected:
|
||||
int thread_count_;
|
||||
const lite::Context *ctx_;
|
||||
SoftmaxParameter *softmax_param_;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SOFTMAX_BASE_H_
|
@ -0,0 +1,111 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/runtime/kernel/arm/int8/softmax_int8.h"
|
||||
#include "src/runtime/kernel/arm/opclib/int8/softmax_int8.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/runtime/runtime_api.h"
|
||||
#include "include/errorcode.h"
|
||||
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
int SoftmaxInt8CPUKernel::Init() {
|
||||
SoftmaxBaseCPUKernel::Init();
|
||||
|
||||
auto *input_tensor = inputs_.at(kInputIndex);
|
||||
MS_ASSERT(input_tensor);
|
||||
|
||||
auto in_quant_args = input_tensor->GetQuantParams();
|
||||
quant_params_.in_quant_args_.scale_ = in_quant_args.front().scale;
|
||||
quant_params_.in_quant_args_.zp_ = in_quant_args.front().zeroPoint;
|
||||
|
||||
auto *out_tensor = outputs_.at(kOutputIndex);
|
||||
MS_ASSERT(out_tensor);
|
||||
|
||||
auto out_quant_args = out_tensor->GetQuantParams();
|
||||
quant_params_.out_quant_arg_.scale_ = out_quant_args.front().scale;
|
||||
quant_params_.out_quant_arg_.zp_ = out_quant_args.front().zeroPoint;
|
||||
|
||||
int inner_size = 1;
|
||||
for (int i = softmax_param_->axis_ + 1; i < softmax_param_->n_dim_; i++) {
|
||||
inner_size *= softmax_param_->input_shape_[i];
|
||||
}
|
||||
|
||||
exp_data_ = reinterpret_cast<float *>(malloc(softmax_param_->element_size_ * sizeof(float)));
|
||||
sum_data_ = reinterpret_cast<float *>(malloc(inner_size * sizeof(float)));
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int SoftmaxInt8CPUKernel::ReSize() { return RET_OK; }
|
||||
|
||||
int SoftmaxInt8CPUKernel::DoSoftmax(int task_id) {
|
||||
MS_ASSERT(inputs_.size() == 1);
|
||||
MS_ASSERT(outputs_.size() == 1);
|
||||
|
||||
auto input_ptr = reinterpret_cast<int8_t *>(inputs_.at(0)->Data());
|
||||
auto output_ptr = reinterpret_cast<int8_t *>(outputs_.at(0)->Data());
|
||||
|
||||
int outter_size = 1, inner_size = 1;
|
||||
for (int i = 0; i < softmax_param_->axis_; i++) {
|
||||
outter_size *= softmax_param_->input_shape_[i];
|
||||
}
|
||||
for (int i = softmax_param_->axis_; i < softmax_param_->n_dim_; i++) {
|
||||
inner_size *= softmax_param_->input_shape_[i];
|
||||
}
|
||||
|
||||
int stride = UP_DIV(outter_size, thread_count_);
|
||||
int count = MSMIN(stride, outter_size - stride * task_id);
|
||||
|
||||
input_ptr += stride * task_id * inner_size;
|
||||
output_ptr += stride * task_id * inner_size;
|
||||
exp_data_ += stride * task_id * inner_size;
|
||||
|
||||
auto error_code = Softmax(input_ptr, output_ptr, count, exp_data_, sum_data_, quant_params_, softmax_param_);
|
||||
if (error_code != RET_OK) {
|
||||
MS_LOG(ERROR) << "DoSoftmax error task_id[" << task_id << "] error_code[" << error_code << "]";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int SoftmaxRun(int task_id, LiteParallelGroupEnv *penv, void *cdata) {
|
||||
auto softmax_kernel = reinterpret_cast<SoftmaxInt8CPUKernel *>(cdata);
|
||||
auto error_code = softmax_kernel->DoSoftmax(task_id);
|
||||
if (error_code != RET_OK) {
|
||||
MS_LOG(ERROR) << "SoftmaxRun error task_id[" << task_id << "] error_code[" << error_code << "]";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int SoftmaxInt8CPUKernel::Run() {
|
||||
auto input_ptr = reinterpret_cast<int8_t *>(inputs_.at(0)->Data());
|
||||
int ele_size = softmax_param_->element_size_;
|
||||
for (int i = 0; i < ele_size; i++) {
|
||||
float input_scaled = ((input_ptr[i] - quant_params_.in_quant_args_.zp_) * quant_params_.in_quant_args_.scale_);
|
||||
exp_data_[i] = exp(input_scaled);
|
||||
}
|
||||
int error_code = LiteBackendParallelLaunch(SoftmaxRun, this, thread_count_);
|
||||
if (error_code != RET_OK) {
|
||||
MS_LOG(ERROR) << "Softmax function error error_code[" << error_code << "]";
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace mindspore::kernel
|
@ -0,0 +1,43 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SOFTMAX_INT8_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SOFTMAX_INT8_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/runtime/kernel/arm/base/softmax_base.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class SoftmaxInt8CPUKernel : public SoftmaxBaseCPUKernel {
|
||||
public:
|
||||
SoftmaxInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
|
||||
const std::vector<lite::tensor::Tensor *> &outputs, const lite::Context *ctx)
|
||||
: SoftmaxBaseCPUKernel(parameter, inputs, outputs, ctx) {}
|
||||
~SoftmaxInt8CPUKernel() = default;
|
||||
|
||||
int Init() override;
|
||||
int ReSize() override;
|
||||
int Run() override;
|
||||
int DoSoftmax(int task_id);
|
||||
|
||||
private:
|
||||
float *sum_data_;
|
||||
float *exp_data_;
|
||||
SoftmaxQuantArg quant_params_;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SOFTMAX_INT8_H_
|
@ -0,0 +1,56 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/runtime/kernel/arm/opclib/int8/softmax_int8.h"
|
||||
#include <cmath>
|
||||
|
||||
int Softmax(const int8_t *input_ptr, int8_t *output_ptr, int count, float *exp_data, float *sum_data,
|
||||
SoftmaxQuantArg quant_param, SoftmaxParameter *parameter) {
|
||||
int32_t axis = parameter->axis_;
|
||||
int n_dim = parameter->n_dim_;
|
||||
int *input_shape = parameter->input_shape_;
|
||||
int axis_shape_size = input_shape[axis];
|
||||
|
||||
double output_scale = quant_param.out_quant_arg_.scale_;
|
||||
int32_t output_zp = quant_param.out_quant_arg_.zp_;
|
||||
|
||||
int inner_size = 1;
|
||||
for (int i = axis + 1; i < n_dim; i++) {
|
||||
inner_size *= input_shape[i];
|
||||
}
|
||||
|
||||
for (int o = 0; o < count; o++) {
|
||||
int outter_offset = o * axis_shape_size * inner_size;
|
||||
for (int i = 0; i < inner_size; i++) {
|
||||
float sum = 0;
|
||||
for (int j = 0; j < axis_shape_size; j++) {
|
||||
int axis_offset = outter_offset + i + j * inner_size;
|
||||
sum += exp_data[axis_offset];
|
||||
}
|
||||
sum_data[i] = sum;
|
||||
}
|
||||
for (int j = 0; j < axis_shape_size; j++) {
|
||||
int axis_offset = outter_offset + j * inner_size;
|
||||
for (int i = 0; i < inner_size; i++) {
|
||||
int inner_offset = axis_offset + i;
|
||||
float real_output = exp_data[inner_offset] / sum_data[i];
|
||||
int32_t output_scaled = round(real_output / output_scale) + output_zp;
|
||||
output_ptr[inner_offset] = MSMAX(CHAR_MIN, MSMIN(CHAR_MAX, output_scaled));
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,26 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_SOFTMAX_INT8_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_SOFTMAX_INT8_H_
|
||||
|
||||
#include "src/runtime/kernel/arm/opclib/op_base.h"
|
||||
#include "src/runtime/kernel/arm/opclib/softmax_parameter.h"
|
||||
|
||||
int Softmax(const int8_t *input_ptr, int8_t *output_ptr, int count, float *exp_data, float *sum_data,
|
||||
SoftmaxQuantArg quant_param, SoftmaxParameter *parameter);
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_SOFTMAX_INT8_H_
|
@ -0,0 +1,30 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_SOFTMAX_PARAMETER_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_SOFTMAX_PARAMETER_H_
|
||||
|
||||
#include "src/runtime/kernel/arm/opclib/op_base.h"
|
||||
|
||||
struct SoftmaxParameter {
|
||||
OpParameter op_parameter_;
|
||||
int32_t axis_;
|
||||
int element_size_;
|
||||
int n_dim_;
|
||||
int input_shape_[4];
|
||||
};
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_SOFTMAX_PARAMETER_H_
|
@ -0,0 +1,92 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include "common/common_test.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/arm/int8/softmax_int8.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/arm/opclib/softmax_parameter.h"
|
||||
#include "mindspore/lite/src/kernel_registry.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
class TestSoftmaxInt8 : public mindspore::Common {
|
||||
public:
|
||||
TestSoftmaxInt8() {}
|
||||
};
|
||||
|
||||
TEST_F(TestSoftmaxInt8, SoftmaxInt8) {
|
||||
std::vector<lite::tensor::Tensor *> inputs_tensor;
|
||||
std::vector<lite::tensor::Tensor *> outputs_tensor;
|
||||
|
||||
SoftmaxParameter op_param;
|
||||
op_param.op_parameter_.type_ = schema::PrimitiveType_SoftMax;
|
||||
op_param.axis_ = 2;
|
||||
op_param.element_size_ = 24;
|
||||
op_param.input_shape_[0] = 1;
|
||||
op_param.input_shape_[1] = 2;
|
||||
op_param.input_shape_[2] = 3;
|
||||
op_param.input_shape_[3] = 4;
|
||||
|
||||
lite::tensor::QuantArg input_quant_arg;
|
||||
input_quant_arg.scale = 0.0352941;
|
||||
input_quant_arg.zeroPoint = -128;
|
||||
lite::tensor::QuantArg output_quant_arg;
|
||||
output_quant_arg.scale = 0.00392157;
|
||||
output_quant_arg.zeroPoint = -128;
|
||||
|
||||
std::vector<int8_t> input = {-71, -43, -15, 14, -43, -15, 14, 42, 70, 99, 99, 127,
|
||||
-100, -71, -43, -15, 14, 42, 70, 99, 42, 70, 99, 127};
|
||||
std::vector<int> in_shape = {1, 2, 3, 4};
|
||||
|
||||
lite::tensor::Tensor input0_tensor;
|
||||
TypeId tid_int8 = kNumberTypeInt8;
|
||||
inputs_tensor.push_back(&input0_tensor);
|
||||
input0_tensor.SetData(input.data());
|
||||
input0_tensor.set_shape(in_shape);
|
||||
input0_tensor.AddQuantParam(input_quant_arg);
|
||||
input0_tensor.set_data_type(tid_int8);
|
||||
|
||||
std::vector<int8_t> output(24);
|
||||
std::vector<int> output_shape = {1, 2, 3, 4};
|
||||
|
||||
lite::tensor::Tensor output0_tensor;
|
||||
outputs_tensor.push_back(&output0_tensor);
|
||||
output0_tensor.SetData(output.data());
|
||||
output0_tensor.AddQuantParam(output_quant_arg);
|
||||
output0_tensor.set_data_type(tid_int8);
|
||||
|
||||
auto ctx = std::make_shared<lite::Context>();
|
||||
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_SoftMax};
|
||||
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
|
||||
ASSERT_NE(creator, nullptr);
|
||||
|
||||
kernel::LiteKernel *kernel =
|
||||
creator(inputs_tensor, outputs_tensor, reinterpret_cast<OpParameter *>(&op_param), ctx.get(), desc);
|
||||
ASSERT_NE(kernel, nullptr);
|
||||
auto output_tensor_shape = output0_tensor.shape();
|
||||
kernel->Run();
|
||||
|
||||
std::vector<int8_t> except_result = {-126, -126, -124, -124, -123, -124, -116, -116, 121, 121, 111, 111,
|
||||
-127, -127, -127, -127, -59, -59, -61, -59, 57, 57, 59, 57};
|
||||
|
||||
CompareOutputData(output.data(), except_result.data(), input.size(), 0.000001);
|
||||
|
||||
input0_tensor.SetData(nullptr);
|
||||
output0_tensor.SetData(nullptr);
|
||||
}
|
||||
|
||||
} // namespace mindspore
|
Loading…
Reference in new issue