parent
7a192973ff
commit
e1dba1337c
@ -0,0 +1,108 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
test nn.Tril()
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
def test_tril():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||
|
||||
def construct(self):
|
||||
tril = nn.Tril()
|
||||
return tril(self.value, 0)
|
||||
|
||||
net = Net()
|
||||
out = net()
|
||||
assert np.sum(out.asnumpy()) == 34
|
||||
|
||||
|
||||
def test_tril_1():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||
|
||||
def construct(self):
|
||||
tril = nn.Tril()
|
||||
return tril(self.value, 1)
|
||||
|
||||
net = Net()
|
||||
out = net()
|
||||
assert np.sum(out.asnumpy()) == 42
|
||||
|
||||
|
||||
def test_tril_2():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||
|
||||
def construct(self):
|
||||
tril = nn.Tril()
|
||||
return tril(self.value, -1)
|
||||
|
||||
net = Net()
|
||||
out = net()
|
||||
assert np.sum(out.asnumpy()) == 19
|
||||
|
||||
|
||||
def test_tril_parameter():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
tril = nn.Tril()
|
||||
return tril(x, 0)
|
||||
|
||||
net = Net()
|
||||
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
||||
|
||||
|
||||
def test_tril_parameter_1():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
tril = nn.Tril()
|
||||
return tril(x, 1)
|
||||
|
||||
net = Net()
|
||||
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
||||
|
||||
|
||||
def test_tril_parameter_2():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
tril = nn.Tril()
|
||||
return tril(x, -1)
|
||||
|
||||
net = Net()
|
||||
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
@ -0,0 +1,108 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
test nn.Triu()
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
def test_triu():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||
|
||||
def construct(self):
|
||||
triu = nn.Triu()
|
||||
return triu(self.value, 0)
|
||||
|
||||
net = Net()
|
||||
out = net()
|
||||
assert np.sum(out.asnumpy()) == 26
|
||||
|
||||
|
||||
def test_triu_1():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||
|
||||
def construct(self):
|
||||
triu = nn.Triu()
|
||||
return triu(self.value, 1)
|
||||
|
||||
net = Net()
|
||||
out = net()
|
||||
assert np.sum(out.asnumpy()) == 11
|
||||
|
||||
|
||||
def test_triu_2():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.value = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
||||
|
||||
def construct(self):
|
||||
triu = nn.Triu()
|
||||
return triu(self.value, -1)
|
||||
|
||||
net = Net()
|
||||
out = net()
|
||||
assert np.sum(out.asnumpy()) == 38
|
||||
|
||||
|
||||
def test_triu_parameter():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
triu = nn.Triu()
|
||||
return triu(x, 0)
|
||||
|
||||
net = Net()
|
||||
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
||||
|
||||
|
||||
def test_triu_parameter_1():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
triu = nn.Triu()
|
||||
return triu(x, 1)
|
||||
|
||||
net = Net()
|
||||
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
||||
|
||||
|
||||
def test_triu_parameter_2():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
def construct(self, x):
|
||||
triu = nn.Triu()
|
||||
return triu(x, -1)
|
||||
|
||||
net = Net()
|
||||
net(Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
Loading…
Reference in new issue