!3003 gpu support BroadcastTo kernels
Merge pull request !3003 from chenweifeng/broadcasttopull/3003/MERGE
commit
e249197c73
@ -0,0 +1,26 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/arrays/broadcast_to_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(BroadcastTo, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
BroadcastToGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(BroadcastTo, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
BroadcastToGpuKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,83 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_BROADCAST_TO_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_BROADCAST_TO_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/broadcast_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class BroadcastToGpuKernel : public GpuKernel {
|
||||
public:
|
||||
BroadcastToGpuKernel() {}
|
||||
~BroadcastToGpuKernel() = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *input_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
BroadcastTo(input_shape_[0], input_shape_[1], input_shape_[2], input_shape_[3], output_shape_[0], output_shape_[1],
|
||||
output_shape_[2], output_shape_[3], input_addr, output_addr,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto input_shapes = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto output_shapes = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
if (input_shapes.size() > 4 || output_shapes.size() > 4) {
|
||||
MS_LOG(EXCEPTION) << "BroadcastTo operation not support dim greater than 4";
|
||||
}
|
||||
|
||||
for (int i = input_shapes.size() - 1; i >= 0; i--) {
|
||||
input_shape_[i] = input_shapes[i];
|
||||
}
|
||||
|
||||
for (int j = output_shapes.size() - 1; j >= 0; j--) {
|
||||
output_shape_[j] = output_shapes[j];
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_shape_[0] * input_shape_[1] * input_shape_[2] * input_shape_[3] * sizeof(T));
|
||||
output_size_list_.push_back(output_shape_[0] * output_shape_[1] * output_shape_[2] * output_shape_[3] * sizeof(T));
|
||||
}
|
||||
|
||||
private:
|
||||
int input_shape_[4] = {1, 1, 1, 1};
|
||||
int output_shape_[4] = {1, 1, 1, 1};
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_BROADCAST_TO_GPU_KERNEL_H_
|
@ -0,0 +1,40 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_broadcast():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
|
||||
x_np = np.random.rand(3, 1, 5, 1).astype(np.float32)
|
||||
shape = (3, 4, 5, 6)
|
||||
|
||||
output = P.BroadcastTo(shape)(Tensor(x_np))
|
||||
expect = np.broadcast_to(x_np, shape)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
||||
x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16)
|
||||
output = P.BroadcastTo(shape)(Tensor(x1_np))
|
||||
expect = np.broadcast_to(x1_np, shape)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
Loading…
Reference in new issue