parent
7af0d3374f
commit
e2b8810413
@ -0,0 +1,104 @@
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, transpose_x1, transpose_x2):
|
||||
super(Net, self).__init__()
|
||||
self.matmul = nn.MatMul(transpose_x1, transpose_x2)
|
||||
|
||||
def construct(self, x1, x2):
|
||||
return self.matmul(x1, x2)
|
||||
|
||||
|
||||
def test_x1_2D_x2_3D():
|
||||
x1 = np.random.randn(16, 64).astype(np.float32)
|
||||
x2 = np.random.randn(32, 64, 20).astype(np.float32)
|
||||
transpose_x1 = False
|
||||
transpose_x2 = False
|
||||
net = Net(transpose_x1, transpose_x2)
|
||||
output = net(Tensor(x1), Tensor(x2))
|
||||
assert output.shape == (32, 16, 20)
|
||||
|
||||
|
||||
def test_x1_4D_x2_3D_transpose_x2_True():
|
||||
x1 = np.random.randn(3, 2, 3, 4).astype(np.float32)
|
||||
x2 = np.random.randn(1, 5, 4).astype(np.float32)
|
||||
transpose_x1 = False
|
||||
transpose_x2 = True
|
||||
net = Net(transpose_x1, transpose_x2)
|
||||
output = net(Tensor(x1), Tensor(x2))
|
||||
assert output.shape == (3, 2, 3, 5)
|
||||
|
||||
|
||||
def test_x1_3D_transpose_x1_True_x2_2D():
|
||||
x1 = np.random.randn(2, 3, 4).astype(np.float32)
|
||||
x2 = np.random.randn(3, 4).astype(np.float32)
|
||||
transpose_x1 = True
|
||||
transpose_x2 = False
|
||||
net = Net(transpose_x1, transpose_x2)
|
||||
output = net(Tensor(x1), Tensor(x2))
|
||||
assert output.shape == (2, 4, 4)
|
||||
|
||||
|
||||
def test_x1_3D_transpose_x1_True_x2_3D_transpose_x2_True():
|
||||
x1 = np.random.randn(2, 5, 6).astype(np.float32)
|
||||
x2 = np.random.randn(2, 4, 5).astype(np.float32)
|
||||
transpose_x1 = True
|
||||
transpose_x2 = True
|
||||
net = Net(transpose_x1, transpose_x2)
|
||||
output = net(Tensor(x1), Tensor(x2))
|
||||
assert output.shape == (2, 6, 4)
|
||||
|
||||
def test_x1_1D_x2_1D():
|
||||
x1 = np.random.randn(4).astype(np.float32)
|
||||
x2 = np.random.randn(4).astype(np.float32)
|
||||
transpose_x1 = False
|
||||
transpose_x2 = False
|
||||
net = Net(transpose_x1, transpose_x2)
|
||||
output = net(Tensor(x1), Tensor(x2))
|
||||
assert output.shape == ()
|
||||
|
||||
def test_x1_1D_x2_3D():
|
||||
x1 = np.random.randn(4).astype(np.float32)
|
||||
x2 = np.random.randn(2, 4, 5).astype(np.float32)
|
||||
transpose_x1 = False
|
||||
transpose_x2 = False
|
||||
net = Net(transpose_x1, transpose_x2)
|
||||
output = net(Tensor(x1), Tensor(x2))
|
||||
assert output.shape == (2, 5)
|
||||
|
||||
|
||||
def test_x1_3D_x2_1D():
|
||||
x1 = np.random.randn(2, 4, 5).astype(np.float32)
|
||||
x2 = np.random.randn(5).astype(np.float32)
|
||||
transpose_x1 = False
|
||||
transpose_x2 = False
|
||||
net = Net(transpose_x1, transpose_x2)
|
||||
output = net(Tensor(x1), Tensor(x2))
|
||||
assert output.shape == (2, 4)
|
||||
|
||||
|
||||
def test_x1_1D_transpose_x1_True_x2_3D():
|
||||
x1 = np.random.randn(4).astype(np.float32)
|
||||
x2 = np.random.randn(2, 4, 5).astype(np.float32)
|
||||
transpose_x1 = True
|
||||
transpose_x2 = False
|
||||
net = Net(transpose_x1, transpose_x2)
|
||||
output = net(Tensor(x1), Tensor(x2))
|
||||
assert output.shape == (2, 5)
|
||||
|
||||
|
||||
def test_x1_3D_x2_1D_transpose_x2_True():
|
||||
x1 = np.random.randn(2, 4, 5).astype(np.float32)
|
||||
x2 = np.random.randn(5).astype(np.float32)
|
||||
transpose_x1 = False
|
||||
transpose_x2 = True
|
||||
net = Net(transpose_x1, transpose_x2)
|
||||
output = net(Tensor(x1), Tensor(x2))
|
||||
assert output.shape == (2, 4)
|
Loading…
Reference in new issue