commit
e3796b3639
@ -0,0 +1,100 @@
|
||||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/kernel_compiler/cpu/binary_cross_entropy_cpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
void BinaryCrossEntropyCpuKernel::LaunchToScalar(const int &input_size, const int &reduction, T *loss, T *tmp_loss) {
|
||||
if (input_size % 2 == 1) {
|
||||
tmp_loss[0] += tmp_loss[input_size - 1];
|
||||
}
|
||||
|
||||
for (int stride = input_size / 2; stride > 0; stride >>= 1) {
|
||||
for (int i = 0; i < stride; i++) {
|
||||
tmp_loss[i] += tmp_loss[i + stride];
|
||||
}
|
||||
if (stride > 2 && stride % 2 == 1) {
|
||||
tmp_loss[0] += tmp_loss[stride - 1];
|
||||
}
|
||||
}
|
||||
|
||||
loss[0] += tmp_loss[0];
|
||||
if (reduction == 1) {
|
||||
loss[0] /= static_cast<T>(input_size);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void BinaryCrossEntropyCpuKernel::Launchkernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
T *input_x = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
T *input_y = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
T *weight = reinterpret_cast<T *>(inputs[2]->addr);
|
||||
T *loss = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
std::vector<T> tmp_loss(input_size_);
|
||||
|
||||
T epsilon = static_cast<T>(1e-12);
|
||||
T one = static_cast<T>(1);
|
||||
if (reduction_ == 0) {
|
||||
for (size_t i = 0; i < input_size_; i++) {
|
||||
T value =
|
||||
-weight[i] * (input_y[i] * log(input_x[i] + epsilon) + (one - input_y[i]) * log(one - input_x[i] + epsilon));
|
||||
loss[i] = value;
|
||||
}
|
||||
} else {
|
||||
for (size_t i = 0; i < input_size_; i++) {
|
||||
T value =
|
||||
-weight[i] * (input_y[i] * log(input_x[i] + epsilon) + (one - input_y[i]) * log(one - input_x[i] + epsilon));
|
||||
tmp_loss[i] = value;
|
||||
}
|
||||
}
|
||||
|
||||
if (reduction_ != 0) {
|
||||
LaunchToScalar<T>(input_size_, reduction_, loss, tmp_loss.data());
|
||||
}
|
||||
}
|
||||
|
||||
bool BinaryCrossEntropyCpuKernel::Launch(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
if (input_size_ > 0) {
|
||||
if (dtype_ == kNumberTypeFloat32) {
|
||||
Launchkernel<float>(inputs, workspace, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat16) {
|
||||
Launchkernel<float16>(inputs, workspace, outputs);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void BinaryCrossEntropyCpuKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
}
|
||||
string reduction = AnfAlgo::GetNodeAttr<string>(kernel_node, "reduction");
|
||||
if (reduction == "none") {
|
||||
reduction_ = 0;
|
||||
} else if (reduction == "sum") {
|
||||
reduction_ = 2;
|
||||
}
|
||||
|
||||
dtype_ = AnfAlgo::GetInputDeviceDataType(kernel_node, 0);
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,62 @@
|
||||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class BinaryCrossEntropyCpuKernel : public CPUKernel {
|
||||
public:
|
||||
BinaryCrossEntropyCpuKernel() : input_size_(1), reduction_(1) {}
|
||||
~BinaryCrossEntropyCpuKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void LaunchToScalar(const int &input_size, const int &reduction, T *loss, T *tmp_loss);
|
||||
template <typename T>
|
||||
void Launchkernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs);
|
||||
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
size_t input_size_;
|
||||
int reduction_;
|
||||
};
|
||||
MS_REG_CPU_KERNEL(BinaryCrossEntropy,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
BinaryCrossEntropyCpuKernel);
|
||||
MS_REG_CPU_KERNEL(BinaryCrossEntropy,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
BinaryCrossEntropyCpuKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H
|
@ -0,0 +1,78 @@
|
||||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/kernel_compiler/cpu/binary_cross_entropy_grad_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
void BinaryCrossEntropyGradCpuKernel::Launchkernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
T *input_x = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
T *input_y = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
T *dloss = reinterpret_cast<T *>(inputs[2]->addr);
|
||||
T *weight = reinterpret_cast<T *>(inputs[3]->addr);
|
||||
T *dx = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
|
||||
T epsilon = static_cast<T>(1e-12);
|
||||
T one = static_cast<T>(1);
|
||||
if (reduction_ == 0) {
|
||||
for (size_t i = 0; i < input_size_; i++) {
|
||||
T denominator = ((input_x[i] * (one - input_x[i])) > epsilon) ? (input_x[i] * (one - input_x[i])) : epsilon;
|
||||
T value = weight[i] * (input_x[i] - input_y[i]) / denominator;
|
||||
dx[i] = value * dloss[i];
|
||||
}
|
||||
} else {
|
||||
T dloss1 = dloss[0];
|
||||
if (reduction_ == 1) {
|
||||
dloss1 = dloss[0] / static_cast<T>(input_size_);
|
||||
}
|
||||
for (size_t i = 0; i < input_size_; i++) {
|
||||
T denominator = ((input_x[i] * (one - input_x[i])) > epsilon) ? (input_x[i] * (one - input_x[i])) : epsilon;
|
||||
T value = weight[i] * (input_x[i] - input_y[i]) / denominator;
|
||||
dx[i] = value * dloss1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool BinaryCrossEntropyGradCpuKernel::Launch(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
if (input_size_ > 0) {
|
||||
if (dtype_ == kNumberTypeFloat32) {
|
||||
Launchkernel<float>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat16) {
|
||||
Launchkernel<float16>(inputs, outputs);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void BinaryCrossEntropyGradCpuKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
}
|
||||
string reduction = AnfAlgo::GetNodeAttr<string>(kernel_node, "reduction");
|
||||
if (reduction == "none") {
|
||||
reduction_ = 0;
|
||||
} else if (reduction == "sum") {
|
||||
reduction_ = 2;
|
||||
}
|
||||
|
||||
dtype_ = AnfAlgo::GetInputDeviceDataType(kernel_node, 0);
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,61 @@
|
||||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class BinaryCrossEntropyGradCpuKernel : public CPUKernel {
|
||||
public:
|
||||
BinaryCrossEntropyGradCpuKernel() : input_size_(1), reduction_(1) {}
|
||||
~BinaryCrossEntropyGradCpuKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void Launchkernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
size_t input_size_;
|
||||
int reduction_;
|
||||
};
|
||||
MS_REG_CPU_KERNEL(BinaryCrossEntropyGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
BinaryCrossEntropyGradCpuKernel);
|
||||
MS_REG_CPU_KERNEL(BinaryCrossEntropyGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
BinaryCrossEntropyGradCpuKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H
|
@ -0,0 +1,141 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, reduction="none"):
|
||||
super(Net, self).__init__()
|
||||
self.BinaryCrossEntropy = P.BinaryCrossEntropy(reduction)
|
||||
|
||||
def construct(self, x, y, weight):
|
||||
return self.BinaryCrossEntropy(x, y, weight)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_binary_cross_entropy_loss():
|
||||
np.random.seed(42)
|
||||
prediction = np.random.rand(20).astype(np.float32)
|
||||
target = np.random.rand(20).astype(np.float32)
|
||||
weight = np.random.rand(20).astype(np.float32)
|
||||
reduction = "none"
|
||||
net = Net(reduction)
|
||||
loss = net(Tensor(prediction), Tensor(target), Tensor(weight))
|
||||
expect = [0.09555826, 1.2861121, 0.03518666, 0.6969416, 0.24313456, 0.99062896,
|
||||
0.19205657, 0.5465214, 0.36964455, 0.21999404, 2.2953863, 2.2566645,
|
||||
1.5803775, 1.3266402, 0.9883408, 1.2997618, 0.05439841, 0.14389999,
|
||||
0.03405444, 0.23934692]
|
||||
assert np.allclose(loss.asnumpy(), expect)
|
||||
|
||||
def test_binary_cross_entropy_loss_mean():
|
||||
np.random.seed(42)
|
||||
prediction = np.random.rand(20).astype(np.float32)
|
||||
target = np.random.rand(20).astype(np.float32)
|
||||
weight = np.random.rand(20).astype(np.float32)
|
||||
reduction = "mean"
|
||||
net = Net(reduction)
|
||||
loss = net(Tensor(prediction), Tensor(target), Tensor(weight))
|
||||
expect = [0.7447324991226196]
|
||||
assert loss.asnumpy() == expect
|
||||
|
||||
def test_binary_cross_entropy_loss_sum():
|
||||
np.random.seed(42)
|
||||
prediction = np.random.rand(20).astype(np.float32)
|
||||
target = np.random.rand(20).astype(np.float32)
|
||||
weight = np.random.rand(20).astype(np.float32)
|
||||
reduction = "sum"
|
||||
net = Net(reduction)
|
||||
loss = net(Tensor(prediction), Tensor(target), Tensor(weight))
|
||||
expect = [14.894649505615234]
|
||||
assert loss.asnumpy() == expect
|
||||
|
||||
def test_binary_cross_entropy_loss_16():
|
||||
np.random.seed(42)
|
||||
prediction = np.random.rand(20).astype(np.float16)
|
||||
target = np.random.rand(20).astype(np.float16)
|
||||
weight = np.random.rand(20).astype(np.float16)
|
||||
reduction = "none"
|
||||
net = Net(reduction)
|
||||
loss = net(Tensor(prediction), Tensor(target), Tensor(weight))
|
||||
expect = [0.09552, 1.28613, 0.0351868, 0.696777, 0.243164, 0.990234,
|
||||
0.192139, 0.546875, 0.370117, 0.219971, 2.29492, 2.25391,
|
||||
1.58105, 1.32812, 0.987305, 1.30078, 0.0544434, 0.143921,
|
||||
0.0340576, 0.239258]
|
||||
assert np.allclose(loss.asnumpy(), expect)
|
||||
|
||||
def test_binary_cross_entropy_loss_mean_16():
|
||||
np.random.seed(42)
|
||||
prediction = np.random.rand(20).astype(np.float16)
|
||||
target = np.random.rand(20).astype(np.float16)
|
||||
weight = np.random.rand(20).astype(np.float16)
|
||||
reduction = "mean"
|
||||
net = Net(reduction)
|
||||
loss = net(Tensor(prediction), Tensor(target), Tensor(weight))
|
||||
expect = [0.74462890625]
|
||||
assert loss.asnumpy() == expect
|
||||
|
||||
def test_binary_cross_entropy_loss_sum_16():
|
||||
np.random.seed(42)
|
||||
prediction = np.random.rand(20).astype(np.float16)
|
||||
target = np.random.rand(20).astype(np.float16)
|
||||
weight = np.random.rand(20).astype(np.float16)
|
||||
reduction = "sum"
|
||||
net = Net(reduction)
|
||||
loss = net(Tensor(prediction), Tensor(target), Tensor(weight))
|
||||
expect = [14.890625]
|
||||
assert loss.asnumpy() == expect
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = C.GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, x1, x2, sens, weight):
|
||||
gout = self.grad(self.network)(x1, x2, sens, weight)
|
||||
return gout
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_binary_cross_entropy_loss_grad():
|
||||
np.random.seed(42)
|
||||
prediction = np.random.rand(20).astype(np.float32)
|
||||
target = np.random.rand(20).astype(np.float32)
|
||||
sens = np.random.rand(20).astype(np.float32)
|
||||
weight = np.random.rand(20).astype(np.float32)
|
||||
reduction = "none"
|
||||
grad = Grad(Net(reduction))
|
||||
dx = grad(Tensor(prediction), Tensor(target), Tensor(sens), Tensor(weight))
|
||||
|
||||
dx1_expect = [-4.80516590e-02, 2.32625079e+00, 6.38972521e-02, 3.13642323e-01,
|
||||
-1.65661633e-01, -1.71821892e+00, -1.13685496e-01, 1.26669514e+00,
|
||||
1.47891801e-03, 5.83921909e-01, -2.17992840e+01, 4.21899414e+00,
|
||||
2.85430793e-02, -3.21346498e+00, -2.22674108e+00, -2.80453944e+00,
|
||||
-1.19787852e-04, 2.48514321e-02, -1.66696273e-02, -2.71965731e-02]
|
||||
|
||||
assert np.allclose(dx[0].asnumpy(), dx1_expect)
|
Loading…
Reference in new issue