|
|
|
@ -176,8 +176,8 @@ class ResidualBlock(nn.Cell):
|
|
|
|
|
in_channel (int): Input channel.
|
|
|
|
|
out_channel (int): Output channel.
|
|
|
|
|
stride (int): Stride size for the first convolutional layer. Default: 1.
|
|
|
|
|
use_se (bool): enable SE-ResNet50 net. Default: False.
|
|
|
|
|
se_block(bool): use se block in SE-ResNet50 net. Default: False.
|
|
|
|
|
use_se (bool): Enable SE-ResNet50 net. Default: False.
|
|
|
|
|
se_block(bool): Use se block in SE-ResNet50 net. Default: False.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor, output tensor.
|
|
|
|
@ -276,8 +276,9 @@ class ResidualBlockBase(nn.Cell):
|
|
|
|
|
in_channel (int): Input channel.
|
|
|
|
|
out_channel (int): Output channel.
|
|
|
|
|
stride (int): Stride size for the first convolutional layer. Default: 1.
|
|
|
|
|
use_se (bool): enable SE-ResNet50 net. Default: False.
|
|
|
|
|
se_block(bool): use se block in SE-ResNet50 net. Default: False.
|
|
|
|
|
use_se (bool): Enable SE-ResNet50 net. Default: False.
|
|
|
|
|
se_block(bool): Use se block in SE-ResNet50 net. Default: False.
|
|
|
|
|
res_base (bool): Enable parameter setting of resnet18. Default: True.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor, output tensor.
|
|
|
|
@ -290,9 +291,9 @@ class ResidualBlockBase(nn.Cell):
|
|
|
|
|
in_channel,
|
|
|
|
|
out_channel,
|
|
|
|
|
stride=1,
|
|
|
|
|
res_base=True,
|
|
|
|
|
use_se=False,
|
|
|
|
|
se_block=False):
|
|
|
|
|
se_block=False,
|
|
|
|
|
res_base=True):
|
|
|
|
|
super(ResidualBlockBase, self).__init__()
|
|
|
|
|
self.res_base = res_base
|
|
|
|
|
self.conv1 = _conv3x3(in_channel, out_channel, stride=stride, res_base=self.res_base)
|
|
|
|
@ -341,8 +342,10 @@ class ResNet(nn.Cell):
|
|
|
|
|
out_channels (list): Output channel in each layer.
|
|
|
|
|
strides (list): Stride size in each layer.
|
|
|
|
|
num_classes (int): The number of classes that the training images are belonging to.
|
|
|
|
|
use_se (bool): enable SE-ResNet50 net. Default: False.
|
|
|
|
|
se_block(bool): use se block in SE-ResNet50 net in layer 3 and layer 4. Default: False.
|
|
|
|
|
use_se (bool): Enable SE-ResNet50 net. Default: False.
|
|
|
|
|
se_block(bool): Use se block in SE-ResNet50 net in layer 3 and layer 4. Default: False.
|
|
|
|
|
res_base (bool): Enable parameter setting of resnet18. Default: True.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tensor, output tensor.
|
|
|
|
|
|
|
|
|
@ -432,7 +435,7 @@ class ResNet(nn.Cell):
|
|
|
|
|
in_channel (int): Input channel.
|
|
|
|
|
out_channel (int): Output channel.
|
|
|
|
|
stride (int): Stride size for the first convolutional layer.
|
|
|
|
|
se_block(bool): use se block in SE-ResNet50 net. Default: False.
|
|
|
|
|
se_block(bool): Use se block in SE-ResNet50 net. Default: False.
|
|
|
|
|
Returns:
|
|
|
|
|
SequentialCell, the output layer.
|
|
|
|
|
|
|
|
|
|