add Sigmoid and SigmoidGrad operation of GPU

pull/2281/head
lizhenyu 5 years ago
parent 21ade66802
commit ea0cd5ccdd

@ -27,5 +27,10 @@ MS_REG_GPU_KERNEL_ONE(Tanh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOut
ActivationGpuFwdKernel, float)
MS_REG_GPU_KERNEL_ONE(Tanh, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
ActivationGpuFwdKernel, half)
MS_REG_GPU_KERNEL_ONE(Sigmoid, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ActivationGpuFwdKernel, float)
MS_REG_GPU_KERNEL_ONE(Sigmoid, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
ActivationGpuFwdKernel, half)
} // namespace kernel
} // namespace mindspore

@ -35,5 +35,14 @@ MS_REG_GPU_KERNEL_ONE(
TanhGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
ActivationGradGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(
SigmoidGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
ActivationGradGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(
SigmoidGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
ActivationGradGpuKernel, half)
} // namespace kernel
} // namespace mindspore

@ -0,0 +1,61 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops.operations import _grad_ops as G
class NetSigmoidGrad(nn.Cell):
def __init__(self):
super(NetSigmoidGrad, self).__init__()
self.sigmoid_grad = G.SigmoidGrad()
def construct(self, y, dy):
return self.sigmoid_grad(y, dy)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sigmoid_grad():
y = Tensor(np.array([[[[-1, 1, 2],
[1, -1, 1],
[2, 1, -1]]]]).astype(np.float32))
dy = Tensor(np.array([[[[-11, 2, 4],
[-1, 1, -1],
[-4, 4, -4]]]]).astype(np.float32))
expect = np.array([[[[22, 0, -8],
[0, -2, 0],
[8, 0, 8]]]]).astype(np.float32)
error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
sigmoid_grad = NetSigmoidGrad()
output = sigmoid_grad(y, dy)
diff = output.asnumpy() - expect
assert np.all(abs(diff) < error)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
sigmoid_grad = NetSigmoidGrad()
output = sigmoid_grad(y, dy)
diff = output.asnumpy() - expect
assert np.all(abs(diff) < error)

@ -0,0 +1,57 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class NetSigmoid(nn.Cell):
def __init__(self):
super(NetSigmoid, self).__init__()
self.sigmoid = P.Sigmoid()
def construct(self, x):
return self.sigmoid(x)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sigmoid():
x = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1],
[10, 1, -1]]]]).astype(np.float32))
expect = np.array([[[[0.268941, 0.731059, 0.999955],
[0.731059, 0.268941, 0.731059],
[0.999955, 0.731059, 0.268941]]]]).astype(np.float32)
error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
sigmoid = NetSigmoid()
output = sigmoid(x)
diff = output.asnumpy() - expect
assert np.all(abs(diff) < error)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
sigmoid = NetSigmoid()
output = sigmoid(x)
diff = output.asnumpy() - expect
assert np.all(abs(diff) < error)
Loading…
Cancel
Save