parent
21ade66802
commit
ea0cd5ccdd
@ -0,0 +1,61 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
|
||||
class NetSigmoidGrad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSigmoidGrad, self).__init__()
|
||||
self.sigmoid_grad = G.SigmoidGrad()
|
||||
|
||||
def construct(self, y, dy):
|
||||
return self.sigmoid_grad(y, dy)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sigmoid_grad():
|
||||
y = Tensor(np.array([[[[-1, 1, 2],
|
||||
[1, -1, 1],
|
||||
[2, 1, -1]]]]).astype(np.float32))
|
||||
dy = Tensor(np.array([[[[-11, 2, 4],
|
||||
[-1, 1, -1],
|
||||
[-4, 4, -4]]]]).astype(np.float32))
|
||||
|
||||
expect = np.array([[[[22, 0, -8],
|
||||
[0, -2, 0],
|
||||
[8, 0, 8]]]]).astype(np.float32)
|
||||
|
||||
error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
sigmoid_grad = NetSigmoidGrad()
|
||||
output = sigmoid_grad(y, dy)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(abs(diff) < error)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
sigmoid_grad = NetSigmoidGrad()
|
||||
output = sigmoid_grad(y, dy)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(abs(diff) < error)
|
@ -0,0 +1,57 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class NetSigmoid(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSigmoid, self).__init__()
|
||||
self.sigmoid = P.Sigmoid()
|
||||
|
||||
def construct(self, x):
|
||||
return self.sigmoid(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sigmoid():
|
||||
x = Tensor(np.array([[[[-1, 1, 10],
|
||||
[1, -1, 1],
|
||||
[10, 1, -1]]]]).astype(np.float32))
|
||||
expect = np.array([[[[0.268941, 0.731059, 0.999955],
|
||||
[0.731059, 0.268941, 0.731059],
|
||||
[0.999955, 0.731059, 0.268941]]]]).astype(np.float32)
|
||||
|
||||
error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
sigmoid = NetSigmoid()
|
||||
output = sigmoid(x)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(abs(diff) < error)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
sigmoid = NetSigmoid()
|
||||
output = sigmoid(x)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(abs(diff) < error)
|
Loading…
Reference in new issue