!9577 support distributed predict
From: @gong_zi_yan Reviewed-by: @caozhou_huawei,@yao_yf,@stsuteng,@zh_qh Signed-off-by: @stsutengpull/9577/MERGE
commit
ec3983b77d
@ -0,0 +1,73 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test distribute predict """
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, Model
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore import context
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
"""Net definition"""
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fc1 = nn.Dense(128, 768, activation='relu')
|
||||
self.fc2 = nn.Dense(128, 768, activation='relu')
|
||||
self.fc3 = nn.Dense(128, 768, activation='relu')
|
||||
self.fc4 = nn.Dense(768, 768, activation='relu')
|
||||
self.relu4 = nn.ReLU()
|
||||
self.relu5 = nn.ReLU()
|
||||
self.transpose = P.Transpose()
|
||||
self.matmul1 = P.MatMul()
|
||||
self.matmul2 = P.MatMul()
|
||||
|
||||
def construct(self, x):
|
||||
q = self.fc1(x)
|
||||
k = self.fc2(x)
|
||||
v = self.fc3(x)
|
||||
k = self.transpose(k, (1, 0))
|
||||
c = self.relu4(self.matmul1(q, k))
|
||||
s = self.relu5(self.matmul2(c, v))
|
||||
s = self.fc4(s)
|
||||
return s
|
||||
|
||||
|
||||
def test_distribute_predict():
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, full_batch=True)
|
||||
inputs = Tensor(np.ones([32, 128]).astype(np.float32))
|
||||
net = Net()
|
||||
model = Model(net)
|
||||
predict_map = model.infer_predict_layout(inputs)
|
||||
output = model.predict(inputs)
|
||||
context.reset_auto_parallel_context()
|
||||
return predict_map, output
|
||||
|
||||
|
||||
def test_edge_case():
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
inputs = Tensor(np.ones([32, 48]).astype(np.float32))
|
||||
net = Net()
|
||||
model = Model(net)
|
||||
with pytest.raises(RuntimeError):
|
||||
model.infer_predict_layout(inputs)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
with pytest.raises(RuntimeError):
|
||||
model.infer_predict_layout(inputs)
|
||||
context.set_auto_parallel_context(full_batch=True, enable_parallel_optimizer=True)
|
||||
with pytest.raises(RuntimeError):
|
||||
model.predict(inputs)
|
Loading…
Reference in new issue