parent
8844462e15
commit
edd7e184d8
@ -0,0 +1,195 @@
|
||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
The configuration manager.
|
||||
"""
|
||||
import random
|
||||
import numpy
|
||||
import mindspore._c_dataengine as cde
|
||||
|
||||
__all__ = ['set_seed', 'get_seed', 'set_prefetch_size', 'get_prefetch_size', 'set_num_parallel_workers',
|
||||
'get_num_parallel_workers', 'set_monitor_sampling_interval', 'get_monitor_sampling_interval', 'load']
|
||||
|
||||
INT32_MAX = 2147483647
|
||||
UINT32_MAX = 4294967295
|
||||
|
||||
_config = cde.GlobalContext.config_manager()
|
||||
|
||||
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set the seed to be used in any random generator. This is used to produce deterministic results.
|
||||
|
||||
Note:
|
||||
This set_seed function sets the seed in the python random library and numpy.random library
|
||||
for deterministic python augmentations using randomness. This set_seed function should
|
||||
be called with every iterator created to reset the random seed. In our pipeline this
|
||||
does not guarantee deterministic results with num_parallel_workers > 1.
|
||||
|
||||
Args:
|
||||
seed(int): seed to be set.
|
||||
|
||||
Raises:
|
||||
ValueError: If seed is invalid (< 0 or > MAX_UINT_32).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> # sets the new seed value, now operators with a random seed will use new seed value.
|
||||
>>> ds.config.set_seed(1000)
|
||||
"""
|
||||
if seed < 0 or seed > UINT32_MAX:
|
||||
raise ValueError("Seed given is not within the required range.")
|
||||
_config.set_seed(seed)
|
||||
random.seed(seed)
|
||||
# numpy.random isn't thread safe
|
||||
numpy.random.seed(seed)
|
||||
|
||||
|
||||
def get_seed():
|
||||
"""
|
||||
Get the seed.
|
||||
|
||||
Returns:
|
||||
Int, seed.
|
||||
"""
|
||||
return _config.get_seed()
|
||||
|
||||
|
||||
def set_prefetch_size(size):
|
||||
"""
|
||||
Set the number of rows to be prefetched.
|
||||
|
||||
Args:
|
||||
size (int): total number of rows to be prefetched.
|
||||
|
||||
Raises:
|
||||
ValueError: If prefetch_size is invalid (<= 0 or > MAX_INT_32).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> # sets the new prefetch value.
|
||||
>>> ds.config.set_prefetch_size(1000)
|
||||
"""
|
||||
if size <= 0 or size > INT32_MAX:
|
||||
raise ValueError("Prefetch size given is not within the required range.")
|
||||
_config.set_op_connector_size(size)
|
||||
|
||||
|
||||
def get_prefetch_size():
|
||||
"""
|
||||
Get the prefetch size in number of rows.
|
||||
|
||||
Returns:
|
||||
Size, total number of rows to be prefetched.
|
||||
"""
|
||||
return _config.get_op_connector_size()
|
||||
|
||||
|
||||
def set_num_parallel_workers(num):
|
||||
"""
|
||||
Set the default number of parallel workers.
|
||||
|
||||
Args:
|
||||
num (int): number of parallel workers to be used as a default for each operation.
|
||||
|
||||
Raises:
|
||||
ValueError: If num_parallel_workers is invalid (<= 0 or > MAX_INT_32).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> # sets the new parallel_workers value, now parallel dataset operators will run with 8 workers.
|
||||
>>> ds.config.set_num_parallel_workers(8)
|
||||
"""
|
||||
if num <= 0 or num > INT32_MAX:
|
||||
raise ValueError("Num workers given is not within the required range.")
|
||||
_config.set_num_parallel_workers(num)
|
||||
|
||||
|
||||
def get_num_parallel_workers():
|
||||
"""
|
||||
Get the default number of parallel workers.
|
||||
|
||||
Returns:
|
||||
Int, number of parallel workers to be used as a default for each operation
|
||||
"""
|
||||
return _config.get_num_parallel_workers()
|
||||
|
||||
|
||||
def set_monitor_sampling_interval(interval):
|
||||
"""
|
||||
Set the default interval(ms) of monitor sampling.
|
||||
|
||||
Args:
|
||||
interval (int): interval(ms) to be used to performance monitor sampling.
|
||||
|
||||
Raises:
|
||||
ValueError: If interval is invalid (<= 0 or > MAX_INT_32).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> # sets the new interval value.
|
||||
>>> ds.config.set_monitor_sampling_interval(100)
|
||||
"""
|
||||
if interval <= 0 or interval > INT32_MAX:
|
||||
raise ValueError("Interval given is not within the required range.")
|
||||
_config.set_monitor_sampling_interval(interval)
|
||||
|
||||
|
||||
def get_monitor_sampling_interval():
|
||||
"""
|
||||
Get the default interval of performance monitor sampling.
|
||||
|
||||
Returns:
|
||||
Interval: interval(ms) of performance monitor sampling.
|
||||
"""
|
||||
return _config.get_monitor_sampling_interval()
|
||||
|
||||
|
||||
def __str__():
|
||||
"""
|
||||
String representation of the configurations.
|
||||
|
||||
Returns:
|
||||
Str, configurations.
|
||||
"""
|
||||
return str(_config)
|
||||
|
||||
|
||||
def load(file):
|
||||
"""
|
||||
Load configuration from a file.
|
||||
|
||||
Args:
|
||||
file (str): path the config file to be loaded.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If file is invalid and parsing fails.
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> # sets the default value according to values in configuration file.
|
||||
>>> ds.config.load("path/to/config/file")
|
||||
>>> # example config file:
|
||||
>>> # {
|
||||
>>> # "logFilePath": "/tmp",
|
||||
>>> # "rowsPerBuffer": 32,
|
||||
>>> # "numParallelWorkers": 4,
|
||||
>>> # "workerConnectorSize": 16,
|
||||
>>> # "opConnectorSize": 16,
|
||||
>>> # "seed": 5489,
|
||||
>>> # "monitorSamplingInterval": 30
|
||||
>>> # }
|
||||
"""
|
||||
_config.load(file)
|
@ -1,195 +0,0 @@
|
||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
The configuration manager.
|
||||
"""
|
||||
import random
|
||||
import numpy
|
||||
import mindspore._c_dataengine as cde
|
||||
|
||||
INT32_MAX = 2147483647
|
||||
UINT32_MAX = 4294967295
|
||||
|
||||
|
||||
class ConfigurationManager:
|
||||
"""The configuration manager"""
|
||||
|
||||
def __init__(self):
|
||||
self.config = cde.GlobalContext.config_manager()
|
||||
|
||||
def set_seed(self, seed):
|
||||
"""
|
||||
Set the seed to be used in any random generator. This is used to produce deterministic results.
|
||||
|
||||
Note:
|
||||
This set_seed function sets the seed in the python random library and numpy.random library
|
||||
for deterministic python augmentations using randomness. This set_seed function should
|
||||
be called with every iterator created to reset the random seed. In our pipeline this
|
||||
does not guarantee deterministic results with num_parallel_workers > 1.
|
||||
|
||||
Args:
|
||||
seed(int): seed to be set
|
||||
|
||||
Raises:
|
||||
ValueError: If seed is invalid (< 0 or > MAX_UINT_32).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> con = ds.engine.ConfigurationManager()
|
||||
>>> # sets the new seed value, now operators with a random seed will use new seed value.
|
||||
>>> con.set_seed(1000)
|
||||
"""
|
||||
if seed < 0 or seed > UINT32_MAX:
|
||||
raise ValueError("Seed given is not within the required range")
|
||||
self.config.set_seed(seed)
|
||||
random.seed(seed)
|
||||
# numpy.random isn't thread safe
|
||||
numpy.random.seed(seed)
|
||||
|
||||
def get_seed(self):
|
||||
"""
|
||||
Get the seed
|
||||
|
||||
Returns:
|
||||
Int, seed.
|
||||
"""
|
||||
return self.config.get_seed()
|
||||
|
||||
def set_prefetch_size(self, size):
|
||||
"""
|
||||
Set the number of rows to be prefetched.
|
||||
|
||||
Args:
|
||||
size: total number of rows to be prefetched.
|
||||
|
||||
Raises:
|
||||
ValueError: If prefetch_size is invalid (<= 0 or > MAX_INT_32).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> con = ds.engine.ConfigurationManager()
|
||||
>>> # sets the new prefetch value.
|
||||
>>> con.set_prefetch_size(1000)
|
||||
"""
|
||||
if size <= 0 or size > INT32_MAX:
|
||||
raise ValueError("Prefetch size given is not within the required range")
|
||||
self.config.set_op_connector_size(size)
|
||||
|
||||
def get_prefetch_size(self):
|
||||
"""
|
||||
Get the prefetch size in number of rows.
|
||||
|
||||
Returns:
|
||||
Size, total number of rows to be prefetched.
|
||||
"""
|
||||
return self.config.get_op_connector_size()
|
||||
|
||||
def set_num_parallel_workers(self, num):
|
||||
"""
|
||||
Set the default number of parallel workers
|
||||
|
||||
Args:
|
||||
num: number of parallel workers to be used as a default for each operation
|
||||
|
||||
Raises:
|
||||
ValueError: If num_parallel_workers is invalid (<= 0 or > MAX_INT_32).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> con = ds.engine.ConfigurationManager()
|
||||
>>> # sets the new parallel_workers value, now parallel dataset operators will run with 8 workers.
|
||||
>>> con.set_num_parallel_workers(8)
|
||||
"""
|
||||
if num <= 0 or num > INT32_MAX:
|
||||
raise ValueError("Num workers given is not within the required range")
|
||||
self.config.set_num_parallel_workers(num)
|
||||
|
||||
def get_num_parallel_workers(self):
|
||||
"""
|
||||
Get the default number of parallel workers.
|
||||
|
||||
Returns:
|
||||
Int, number of parallel workers to be used as a default for each operation
|
||||
"""
|
||||
return self.config.get_num_parallel_workers()
|
||||
|
||||
def set_monitor_sampling_interval(self, interval):
|
||||
"""
|
||||
Set the default interval(ms) of monitor sampling.
|
||||
|
||||
Args:
|
||||
interval: interval(ms) to be used to performance monitor sampling.
|
||||
|
||||
Raises:
|
||||
ValueError: If interval is invalid (<= 0 or > MAX_INT_32).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> con = ds.engine.ConfigurationManager()
|
||||
>>> # sets the new interval value.
|
||||
>>> con.set_monitor_sampling_interval(100)
|
||||
"""
|
||||
if interval <= 0 or interval > INT32_MAX:
|
||||
raise ValueError("Interval given is not within the required range")
|
||||
self.config.set_monitor_sampling_interval(interval)
|
||||
|
||||
def get_monitor_sampling_interval(self):
|
||||
"""
|
||||
Get the default interval of performance monitor sampling.
|
||||
|
||||
Returns:
|
||||
Interval: interval(ms) of performance monitor sampling.
|
||||
"""
|
||||
return self.config.get_monitor_sampling_interval()
|
||||
|
||||
def __str__(self):
|
||||
"""
|
||||
String representation of the configurations.
|
||||
|
||||
Returns:
|
||||
Str, configurations.
|
||||
"""
|
||||
return str(self.config)
|
||||
|
||||
def load(self, file):
|
||||
"""
|
||||
Load configuration from a file.
|
||||
|
||||
Args:
|
||||
file: path the config file to be loaded
|
||||
|
||||
Raises:
|
||||
RuntimeError: If file is invalid and parsing fails.
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset as ds
|
||||
>>> con = ds.engine.ConfigurationManager()
|
||||
>>> # sets the default value according to values in configuration file.
|
||||
>>> con.load("path/to/config/file")
|
||||
>>> # example config file:
|
||||
>>> # {
|
||||
>>> # "logFilePath": "/tmp",
|
||||
>>> # "rowsPerBuffer": 32,
|
||||
>>> # "numParallelWorkers": 4,
|
||||
>>> # "workerConnectorSize": 16,
|
||||
>>> # "opConnectorSize": 16,
|
||||
>>> # "seed": 5489,
|
||||
>>> # "monitorSamplingInterval": 30
|
||||
>>> # }
|
||||
"""
|
||||
self.config.load(file)
|
||||
|
||||
|
||||
config = ConfigurationManager()
|
Loading…
Reference in new issue