parent
0db846978e
commit
edf3083510
@ -0,0 +1,95 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/unsorted_segment_sum_cpu_kernel.h"
|
||||
#include <string>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
#include "common/thread_pool.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void UnsortedSegmentSumCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 2) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but UnsortedSegmentSum needs 2 input.";
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but UnsortedSegmentSum needs 1 output.";
|
||||
}
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
segment_ids_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 1);
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto segment_ids_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < input_shape.size(); ++i) {
|
||||
unit_num_ *= input_shape[i];
|
||||
if (i >= segment_ids_shape.size()) {
|
||||
input_dim1_ *= input_shape[i];
|
||||
}
|
||||
}
|
||||
output_dim0_ = output_shape[0];
|
||||
for (size_t j = 1; j < output_shape.size(); j++) {
|
||||
output_dim1_ *= output_shape[j];
|
||||
}
|
||||
}
|
||||
|
||||
bool UnsortedSegmentSumCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
bool ret{true};
|
||||
if (dtype_ == kNumberTypeInt32 && segment_ids_dtype_ == kNumberTypeInt32) {
|
||||
ret = LaunchKernel<int, int>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32 && segment_ids_dtype_ == kNumberTypeInt32) {
|
||||
ret = LaunchKernel<float, int>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt32 && segment_ids_dtype_ == kNumberTypeInt64) {
|
||||
ret = LaunchKernel<int, int64_t>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32 && segment_ids_dtype_ == kNumberTypeInt64) {
|
||||
ret = LaunchKernel<float, int64_t>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(ERROR) << "Only support input_x int32 and float32, indices int32 and int64";
|
||||
return false;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename S, typename T>
|
||||
bool UnsortedSegmentSumCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
S *input_addr = reinterpret_cast<S *>(inputs[0]->addr);
|
||||
T *indices_addr = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
S *output_addr = reinterpret_cast<S *>(outputs[0]->addr);
|
||||
auto ret = memset_s(output_addr, outputs[0]->size, 0, outputs[0]->size);
|
||||
if (ret != EOK) {
|
||||
MS_LOG(ERROR) << "Output buff memset fail. ret:" << ret;
|
||||
return false;
|
||||
}
|
||||
for (size_t i = 0; i < unit_num_; ++i) {
|
||||
size_t j = i / input_dim1_;
|
||||
size_t k = i % input_dim1_;
|
||||
|
||||
T index = indices_addr[j];
|
||||
if (index < 0 || index >= SizeToInt(output_dim0_)) {
|
||||
continue;
|
||||
}
|
||||
size_t output_index = index * output_dim1_ + k;
|
||||
output_addr[output_index] += input_addr[i];
|
||||
}
|
||||
return true;
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,66 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNSORTED_SEGMENT_SUM_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNSORTED_SEGMENT_SUM_CPU_KERNEL_H_
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class UnsortedSegmentSumCPUKernel : public CPUKernel {
|
||||
public:
|
||||
UnsortedSegmentSumCPUKernel() = default;
|
||||
~UnsortedSegmentSumCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
template <typename S, typename T>
|
||||
bool LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
TypeId segment_ids_dtype_{kTypeUnknown};
|
||||
size_t unit_num_{1};
|
||||
size_t input_dim1_{1};
|
||||
size_t output_dim0_{1};
|
||||
size_t output_dim1_{1};
|
||||
};
|
||||
MS_REG_CPU_KERNEL(
|
||||
UnsortedSegmentSum,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnsortedSegmentSumCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
UnsortedSegmentSum,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32),
|
||||
UnsortedSegmentSumCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
UnsortedSegmentSum,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
UnsortedSegmentSumCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
UnsortedSegmentSum,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
|
||||
UnsortedSegmentSumCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNSORTED_SEGMENT_SUM_CPU_KERNEL_H_
|
@ -0,0 +1,105 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
||||
class UnsortedSegmentSumNet(nn.Cell):
|
||||
def __init__(self, num_segments):
|
||||
super(UnsortedSegmentSumNet, self).__init__()
|
||||
self.unsorted_segment_sum = P.UnsortedSegmentSum()
|
||||
self.num_segments = num_segments
|
||||
|
||||
def construct(self, data, ids):
|
||||
return self.unsorted_segment_sum(data, ids, self.num_segments)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_1D():
|
||||
input_x = Tensor([1, 2, 3, 4], mstype.float32)
|
||||
segment_ids = Tensor([0, 0, 1, 2], mstype.int32)
|
||||
num_segments = 4
|
||||
|
||||
net = UnsortedSegmentSumNet(num_segments)
|
||||
output = net(input_x, segment_ids)
|
||||
expect = [3, 3, 4, 0]
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_2D():
|
||||
input_x = Tensor([[1, 2, 3, 4],
|
||||
[5, 6, 7, 8],
|
||||
[9, 10, 11, 12]], mstype.float32)
|
||||
segment_ids = Tensor([2, 1, 1], mstype.int32)
|
||||
num_segments = 4
|
||||
|
||||
net = UnsortedSegmentSumNet(num_segments)
|
||||
output = net(input_x, segment_ids)
|
||||
expect = [[0, 0, 0, 0],
|
||||
[14, 16, 18, 20],
|
||||
[1, 2, 3, 4],
|
||||
[0, 0, 0, 0]]
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_3D():
|
||||
input_x = Tensor(np.arange(4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3))
|
||||
segment_ids = Tensor([2, 1, 1, -1], mstype.int32)
|
||||
num_segments = 5
|
||||
|
||||
net = UnsortedSegmentSumNet(num_segments)
|
||||
output = net(input_x, segment_ids)
|
||||
expect = [[[0., 0., 0.],
|
||||
[0., 0., 0.],
|
||||
[0., 0., 0.],
|
||||
[0., 0., 0.],
|
||||
[0., 0., 0.]],
|
||||
[[45., 47., 49.],
|
||||
[51., 53., 55.],
|
||||
[57., 59., 61.],
|
||||
[63., 65., 67.],
|
||||
[69., 71., 73.]],
|
||||
[[0., 1., 2.],
|
||||
[3., 4., 5.],
|
||||
[6., 7., 8.],
|
||||
[9., 10., 11.],
|
||||
[12., 13., 14.]],
|
||||
[[0., 0., 0.],
|
||||
[0., 0., 0.],
|
||||
[0., 0., 0.],
|
||||
[0., 0., 0.],
|
||||
[0., 0., 0.]],
|
||||
[[0., 0., 0.],
|
||||
[0., 0., 0.],
|
||||
[0., 0., 0.],
|
||||
[0., 0., 0.],
|
||||
[0., 0., 0.]]]
|
||||
assert (output.asnumpy() == expect).all()
|
Loading…
Reference in new issue