parent
b6a7f8bd71
commit
ef330cdffe
@ -0,0 +1,70 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "nnacl/fp16/slice_fp16.h"
|
||||
#include <string.h>
|
||||
#include "nnacl/op_base.h"
|
||||
#include "nnacl/errorcode.h"
|
||||
|
||||
void DoSliceFp16(const float16_t *input, float16_t *output, SliceParameter *param, int thread_id) {
|
||||
int32_t out_dim1 = param->size_[1];
|
||||
int32_t out_dim2 = param->size_[2];
|
||||
int32_t out_dim3 = param->size_[3];
|
||||
size_t out_stride2 = out_dim3;
|
||||
size_t out_stride1 = out_stride2 * out_dim2;
|
||||
size_t out_stride0 = out_stride1 * out_dim1;
|
||||
size_t count_per_thread = UP_DIV(out_dim1, param->op_parameter_.thread_num_);
|
||||
size_t thread_stride = thread_id * count_per_thread;
|
||||
size_t copy_size = param->size_[3] * sizeof(float16_t);
|
||||
size_t in_stride2 = param->shape_[3];
|
||||
size_t in_stride1 = param->shape_[2] * in_stride2;
|
||||
size_t in_stride0 = param->shape_[1] * in_stride1;
|
||||
for (int i = 0; i < param->size_[0]; ++i) {
|
||||
size_t out_offset0 = i * out_stride0;
|
||||
size_t in_offset0 = (i + param->begin_[0]) * in_stride0 + param->begin_[3];
|
||||
for (size_t j = 0; j < count_per_thread; ++j) {
|
||||
size_t k = j + thread_stride;
|
||||
if (k >= out_dim1) {
|
||||
break;
|
||||
}
|
||||
size_t out_offset1 = k * out_stride1 + out_offset0;
|
||||
size_t in_offset1 = (k + param->begin_[1]) * in_stride1 + in_offset0;
|
||||
for (int l = 0; l < out_dim2; ++l) {
|
||||
size_t out_offset = out_offset1 + l * out_stride2;
|
||||
size_t in_offset = in_offset1 + (l + param->begin_[2]) * in_stride2;
|
||||
memcpy(output + out_offset, input + in_offset, copy_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void DoSliceFp16NoParallel(const float16_t *input, float16_t *output, SliceParameter *param) {
|
||||
size_t copy_size = param->size_[3] * sizeof(float16_t);
|
||||
size_t in_stride2 = param->shape_[3];
|
||||
size_t in_stride1 = param->shape_[2] * in_stride2;
|
||||
size_t in_stride0 = param->shape_[1] * in_stride1;
|
||||
size_t out_offset = 0;
|
||||
for (int32_t dim0 = param->begin_[0]; dim0 < param->end_[0]; ++dim0) {
|
||||
size_t in_offset0 = dim0 * in_stride0 + param->begin_[3];
|
||||
for (size_t dim1 = param->begin_[1]; dim1 < param->end_[1]; ++dim1) {
|
||||
size_t in_offset1 = dim1 * in_stride1 + in_offset0;
|
||||
for (int32_t dim2 = param->begin_[2]; dim2 < param->end_[2]; ++dim2) {
|
||||
size_t in_offset = in_offset1 + dim2 * in_stride2;
|
||||
memcpy(output + out_offset, input + in_offset, copy_size);
|
||||
out_offset += param->size_[3];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,34 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_NNACL_FP16_SLICE_FP16_H_
|
||||
#define MINDSPORE_LITE_NNACL_FP16_SLICE_FP16_H_
|
||||
|
||||
#include "nnacl/op_base.h"
|
||||
#include "nnacl/slice_parameter.h"
|
||||
#ifdef ENABLE_NEON
|
||||
#include <arm_neon.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
void DoSliceFp16(const float16_t *input, float16_t *output, SliceParameter *param, int thread_id);
|
||||
void DoSliceFp16NoParallel(const float16_t *input, float16_t *output, SliceParameter *param);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // MINDSPORE_LITE_NNACL_FP16_SLICE_FP16_H_
|
@ -1,114 +0,0 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "src/runtime/kernel/arm/base/slice_base.h"
|
||||
#include <vector>
|
||||
#include "src/runtime/kernel/arm/int8/slice_int8.h"
|
||||
#include "src/runtime/kernel/arm/fp32/slice.h"
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "include/errorcode.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_Slice;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
int SliceBaseCPUKernel::Init() { return RET_OK; }
|
||||
|
||||
int SliceBaseCPUKernel::ReSize() {
|
||||
auto input_shape = in_tensors_[0]->shape();
|
||||
if (input_shape.size() > DIMENSION_4D) {
|
||||
MS_LOG(ERROR) << "input dimension num should <= " << DIMENSION_4D;
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < input_shape.size(); ++i) {
|
||||
param_->shape_[i] = input_shape[i];
|
||||
}
|
||||
|
||||
if (param_->param_length_ < DIMENSION_4D) {
|
||||
for (int i = param_->param_length_ - 1, j = 1; i >= 0; --i, ++j) {
|
||||
param_->begin_[DIMENSION_4D - j] = param_->begin_[i];
|
||||
param_->size_[DIMENSION_4D - j] = param_->size_[i];
|
||||
}
|
||||
for (int i = 0; i < DIMENSION_4D - param_->param_length_; i++) {
|
||||
param_->begin_[i] = 0;
|
||||
param_->size_[i] = 1;
|
||||
}
|
||||
}
|
||||
param_->param_length_ = DIMENSION_4D;
|
||||
for (int i = 0; i < DIMENSION_4D; ++i) {
|
||||
if (param_->size_[i] < 0) {
|
||||
param_->size_[i] = param_->shape_[i] - param_->begin_[i];
|
||||
}
|
||||
param_->end_[i] = param_->begin_[i] + param_->size_[i];
|
||||
}
|
||||
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuSliceInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
MS_ASSERT(desc.type == schema::PrimitiveType_Slice);
|
||||
auto *kernel = new (std::nothrow) SliceInt8CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new SliceInt8CPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuSliceFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
if (opParameter == nullptr) {
|
||||
MS_LOG(ERROR) << "Input opParameter is nullptr!";
|
||||
return nullptr;
|
||||
}
|
||||
MS_ASSERT(desc.type == schema::PrimitiveType_Slice);
|
||||
auto *kernel = new (std::nothrow) SliceCPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new SliceCPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
delete kernel;
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_Slice, CpuSliceInt8KernelCreator)
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Slice, CpuSliceFp32KernelCreator)
|
||||
} // namespace mindspore::kernel
|
@ -0,0 +1,91 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "src/runtime/kernel/arm/fp16/slice_fp16.h"
|
||||
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "nnacl/fp16/cast_fp16.h"
|
||||
#include "nnacl/fp16/slice_fp16.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::schema::PrimitiveType_Slice;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
int SliceFp16CPUKernel::SliceParallelRun(int thread_id) {
|
||||
DoSliceFp16(input_fp16_, output_fp16_, param_, thread_id);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int SliceFp16CPUKernel::Run() {
|
||||
auto ret = Prepare();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
|
||||
return ret;
|
||||
}
|
||||
input_fp16_ = ConvertInputFp32toFp16(in_tensors_.at(0), context_);
|
||||
output_fp16_ = MallocOutputFp16(out_tensors_.at(0), context_);
|
||||
if (input_fp16_ == nullptr || output_fp16_ == nullptr) {
|
||||
FreeInputAndOutput();
|
||||
MS_LOG(ERROR) << "input or output is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (param_->size_[1] < op_parameter_->thread_num_) {
|
||||
DoSliceFp16NoParallel(input_fp16_, output_fp16_, param_);
|
||||
return RET_OK;
|
||||
}
|
||||
ret = ParallelLaunch(this->context_->thread_pool_, SliceLaunch, this, op_parameter_->thread_num_);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "slice launch fail!ret: " << ret;
|
||||
}
|
||||
if (out_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
|
||||
Float16ToFloat32(output_fp16_, reinterpret_cast<float *>(out_tensors_.at(0)->MutableData()),
|
||||
out_tensors_.at(0)->ElementsNum());
|
||||
}
|
||||
FreeInputAndOutput();
|
||||
return ret;
|
||||
}
|
||||
|
||||
void SliceFp16CPUKernel::FreeInputAndOutput() {
|
||||
if (in_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
|
||||
context_->allocator->Free(input_fp16_);
|
||||
input_fp16_ = nullptr;
|
||||
}
|
||||
if (out_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
|
||||
context_->allocator->Free(output_fp16_);
|
||||
output_fp16_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
kernel::LiteKernel *CpuSliceFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
|
||||
const mindspore::lite::PrimitiveC *primitive) {
|
||||
auto *kernel = new (std::nothrow) SliceFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
|
||||
if (kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "new SliceFp16CPUKernel fail!";
|
||||
return nullptr;
|
||||
}
|
||||
auto ret = kernel->Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
|
||||
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
|
||||
delete kernel;
|
||||
return nullptr;
|
||||
}
|
||||
return kernel;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Slice, CpuSliceFp16KernelCreator)
|
||||
} // namespace mindspore::kernel
|
Loading…
Reference in new issue