parent
2f5483ebb3
commit
ef3507e973
@ -0,0 +1,102 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Cell
|
||||
import mindspore.ops.operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
|
||||
class TestOptAssignNet_1(Cell):
|
||||
def __init__(self):
|
||||
super(TestOptAssignNet_1, self).__init__()
|
||||
self.add = P.Add()
|
||||
self.reduce_max = P.ReduceMax()
|
||||
self.param = Parameter(
|
||||
Tensor(np.zeros([2, 2, 2]).astype(np.float32)), name='param')
|
||||
|
||||
def construct(self, x, y):
|
||||
add_res = self.add(x, y)
|
||||
F.depend(add_res, F.assign(self.param, add_res))
|
||||
|
||||
return self.reduce_max(add_res)
|
||||
|
||||
|
||||
class TestOptAssignNet_2(Cell):
|
||||
def __init__(self):
|
||||
super(TestOptAssignNet_2, self).__init__()
|
||||
self.add = P.Add()
|
||||
self.param = Parameter(
|
||||
Tensor(np.zeros([2, 2, 2]).astype(np.float32)), name='param')
|
||||
|
||||
def construct(self, x, y):
|
||||
add_res = self.add(x, y)
|
||||
F.depend(add_res, F.assign(self.param, add_res))
|
||||
|
||||
return add_res
|
||||
|
||||
|
||||
def test_opt_assign_output_1():
|
||||
np.random.seed(0)
|
||||
input_x = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32)
|
||||
input_y = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
enable_graph_kernel=True, device_target="GPU")
|
||||
net = TestOptAssignNet_1()
|
||||
result_open_gk = net(Tensor(input_x), Tensor(input_y))
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
enable_graph_kernel=False, device_target="GPU")
|
||||
net_beta = TestOptAssignNet_1()
|
||||
result_close_gk = net_beta(Tensor(input_x), Tensor(input_y))
|
||||
res = np.allclose(result_open_gk.asnumpy(), result_close_gk.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
|
||||
assert res
|
||||
|
||||
|
||||
def test_opt_assign_output_2():
|
||||
np.random.seed(0)
|
||||
input_x = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32)
|
||||
input_y = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
enable_graph_kernel=True, device_target="GPU")
|
||||
net = TestOptAssignNet_2()
|
||||
result_open_gk = net(Tensor(input_x), Tensor(input_y))
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
enable_graph_kernel=False, device_target="GPU")
|
||||
net_beta = TestOptAssignNet_2()
|
||||
result_close_gk = net_beta(Tensor(input_x), Tensor(input_y))
|
||||
res = np.allclose(result_open_gk.asnumpy(), result_close_gk.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
|
||||
assert res
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_opt_assign_gpu_1():
|
||||
test_opt_assign_output_1()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_opt_assign_gpu_2():
|
||||
test_opt_assign_output_2()
|
Loading…
Reference in new issue