|
|
|
@ -556,11 +556,24 @@ class BertTrainOneStepWithLossScaleCellForAdam(nn.Cell):
|
|
|
|
|
return F.depend(ret, succ)
|
|
|
|
|
|
|
|
|
|
cast = P.Cast()
|
|
|
|
|
update_accu_grads = C.MultitypeFuncGraph("update_accu_grads")
|
|
|
|
|
add_grads = C.MultitypeFuncGraph("add_grads")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@add_grads.register("Tensor", "Tensor")
|
|
|
|
|
def _add_grads(accu_grad, grad):
|
|
|
|
|
return accu_grad + cast(grad, mstype.float32)
|
|
|
|
|
|
|
|
|
|
update_accu_grads = C.MultitypeFuncGraph("update_accu_grads")
|
|
|
|
|
|
|
|
|
|
@update_accu_grads.register("Tensor", "Tensor")
|
|
|
|
|
def _update_accu_grads(accu_grad, grad):
|
|
|
|
|
succ = True
|
|
|
|
|
return F.depend(succ, F.assign(accu_grad, cast(grad, mstype.float32)))
|
|
|
|
|
|
|
|
|
|
accumulate_accu_grads = C.MultitypeFuncGraph("accumulate_accu_grads")
|
|
|
|
|
|
|
|
|
|
@accumulate_accu_grads.register("Tensor", "Tensor")
|
|
|
|
|
def _accumulate_accu_grads(accu_grad, grad):
|
|
|
|
|
succ = True
|
|
|
|
|
return F.depend(succ, F.assign_add(accu_grad, cast(grad, mstype.float32)))
|
|
|
|
|
|
|
|
|
@ -575,13 +588,17 @@ def _reset_accu_grads(accu_grad):
|
|
|
|
|
return F.depend(succ, F.assign(accu_grad, zeroslike(accu_grad)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BertTrainAccumulateStepsWithLossScaleCell(nn.Cell):
|
|
|
|
|
class BertTrainAccumulationAllReducePostWithLossScaleCell(nn.Cell):
|
|
|
|
|
"""
|
|
|
|
|
Encapsulation class of bert network training.
|
|
|
|
|
|
|
|
|
|
Append an optimizer to the training network after that the construct
|
|
|
|
|
function can be called to create the backward graph. To mimic higher batch size, gradients are
|
|
|
|
|
accumulated N times before weight update.
|
|
|
|
|
function can be called to create the backward graph.
|
|
|
|
|
|
|
|
|
|
To mimic higher batch size, gradients are accumulated N times before weight update.
|
|
|
|
|
|
|
|
|
|
For distribution mode, allreduce will only be implemented in the weight updated step,
|
|
|
|
|
i.e. the sub-step after gradients accumulated N times.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
network (Cell): The training network. Note that loss function should have been added.
|
|
|
|
@ -591,7 +608,7 @@ class BertTrainAccumulateStepsWithLossScaleCell(nn.Cell):
|
|
|
|
|
batch_size * accumulation_steps. Default: 1.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, network, optimizer, scale_update_cell=None, accumulation_steps=1, enable_global_norm=False):
|
|
|
|
|
super(BertTrainAccumulateStepsWithLossScaleCell, self).__init__(auto_prefix=False)
|
|
|
|
|
super(BertTrainAccumulationAllReducePostWithLossScaleCell, self).__init__(auto_prefix=False)
|
|
|
|
|
self.network = network
|
|
|
|
|
self.network.set_grad()
|
|
|
|
|
self.weights = optimizer.parameters
|
|
|
|
@ -680,7 +697,7 @@ class BertTrainAccumulateStepsWithLossScaleCell(nn.Cell):
|
|
|
|
|
self.cast(scaling_sens,
|
|
|
|
|
mstype.float32))
|
|
|
|
|
|
|
|
|
|
accu_succ = self.hyper_map(update_accu_grads, self.accu_grads, grads)
|
|
|
|
|
accu_succ = self.hyper_map(accumulate_accu_grads, self.accu_grads, grads)
|
|
|
|
|
mean_loss = F.depend(mean_loss, accu_succ)
|
|
|
|
|
|
|
|
|
|
self.get_status(init)
|
|
|
|
@ -716,3 +733,151 @@ class BertTrainAccumulateStepsWithLossScaleCell(nn.Cell):
|
|
|
|
|
|
|
|
|
|
ret = (mean_loss, overflow, scaling_sens)
|
|
|
|
|
return F.depend(ret, succ)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BertTrainAccumulationAllReduceEachWithLossScaleCell(nn.Cell):
|
|
|
|
|
"""
|
|
|
|
|
Encapsulation class of bert network training.
|
|
|
|
|
|
|
|
|
|
Append an optimizer to the training network after that the construct
|
|
|
|
|
function can be called to create the backward graph.
|
|
|
|
|
|
|
|
|
|
To mimic higher batch size, gradients are accumulated N times before weight update.
|
|
|
|
|
|
|
|
|
|
For distribution mode, allreduce will be implemented after each sub-step and the trailing time
|
|
|
|
|
will be overided by backend optimization pass.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
network (Cell): The training network. Note that loss function should have been added.
|
|
|
|
|
optimizer (Optimizer): Optimizer for updating the weights.
|
|
|
|
|
scale_update_cell (Cell): Cell to do the loss scale. Default: None.
|
|
|
|
|
accumulation_steps (int): Number of accumulation steps before gradient update. The global batch size =
|
|
|
|
|
batch_size * accumulation_steps. Default: 1.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, network, optimizer, scale_update_cell=None, accumulation_steps=1, enable_global_norm=False):
|
|
|
|
|
super(BertTrainAccumulationAllReduceEachWithLossScaleCell, self).__init__(auto_prefix=False)
|
|
|
|
|
self.network = network
|
|
|
|
|
self.network.set_grad()
|
|
|
|
|
self.weights = optimizer.parameters
|
|
|
|
|
self.optimizer = optimizer
|
|
|
|
|
self.accumulation_steps = accumulation_steps
|
|
|
|
|
self.enable_global_norm = enable_global_norm
|
|
|
|
|
self.one = Tensor(np.array([1]).astype(np.int32))
|
|
|
|
|
self.zero = Tensor(np.array([0]).astype(np.int32))
|
|
|
|
|
self.local_step = Parameter(initializer(0, [1], mstype.int32))
|
|
|
|
|
self.accu_grads = self.weights.clone(prefix="accu_grads", init='zeros')
|
|
|
|
|
self.accu_overflow = Parameter(initializer(0, [1], mstype.int32))
|
|
|
|
|
self.accu_loss = Parameter(initializer(0, [1], mstype.float32))
|
|
|
|
|
|
|
|
|
|
self.grad = C.GradOperation(get_by_list=True, sens_param=True)
|
|
|
|
|
self.reducer_flag = False
|
|
|
|
|
self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
|
|
|
|
|
if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]:
|
|
|
|
|
self.reducer_flag = True
|
|
|
|
|
self.grad_reducer = F.identity
|
|
|
|
|
self.degree = 1
|
|
|
|
|
if self.reducer_flag:
|
|
|
|
|
self.degree = get_group_size()
|
|
|
|
|
self.grad_reducer = DistributedGradReducer(optimizer.parameters, False, self.degree)
|
|
|
|
|
self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE)
|
|
|
|
|
self.overflow_reducer = F.identity
|
|
|
|
|
if self.is_distributed:
|
|
|
|
|
self.overflow_reducer = P.AllReduce()
|
|
|
|
|
self.cast = P.Cast()
|
|
|
|
|
self.alloc_status = P.NPUAllocFloatStatus()
|
|
|
|
|
self.get_status = P.NPUGetFloatStatus()
|
|
|
|
|
self.clear_before_grad = P.NPUClearFloatStatus()
|
|
|
|
|
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
|
|
|
|
self.base = Tensor(1, mstype.float32)
|
|
|
|
|
self.less_equal = P.LessEqual()
|
|
|
|
|
self.logical_or = P.LogicalOr()
|
|
|
|
|
self.not_equal = P.NotEqual()
|
|
|
|
|
self.select = P.Select()
|
|
|
|
|
self.reshape = P.Reshape()
|
|
|
|
|
self.hyper_map = C.HyperMap()
|
|
|
|
|
self.loss_scale = None
|
|
|
|
|
self.loss_scaling_manager = scale_update_cell
|
|
|
|
|
if scale_update_cell:
|
|
|
|
|
self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32))
|
|
|
|
|
|
|
|
|
|
@C.add_flags(has_effect=True)
|
|
|
|
|
def construct(self,
|
|
|
|
|
input_ids,
|
|
|
|
|
input_mask,
|
|
|
|
|
token_type_id,
|
|
|
|
|
next_sentence_labels,
|
|
|
|
|
masked_lm_positions,
|
|
|
|
|
masked_lm_ids,
|
|
|
|
|
masked_lm_weights,
|
|
|
|
|
sens=None):
|
|
|
|
|
"""Defines the computation performed."""
|
|
|
|
|
weights = self.weights
|
|
|
|
|
loss = self.network(input_ids,
|
|
|
|
|
input_mask,
|
|
|
|
|
token_type_id,
|
|
|
|
|
next_sentence_labels,
|
|
|
|
|
masked_lm_positions,
|
|
|
|
|
masked_lm_ids,
|
|
|
|
|
masked_lm_weights)
|
|
|
|
|
if sens is None:
|
|
|
|
|
scaling_sens = self.loss_scale
|
|
|
|
|
else:
|
|
|
|
|
scaling_sens = sens
|
|
|
|
|
|
|
|
|
|
# update accumulation parameters
|
|
|
|
|
is_accu_step = self.not_equal(self.local_step, self.accumulation_steps)
|
|
|
|
|
self.local_step = self.select(is_accu_step, self.local_step + self.one, self.one)
|
|
|
|
|
self.accu_loss = self.select(is_accu_step, self.accu_loss + loss, loss)
|
|
|
|
|
mean_loss = self.accu_loss / self.local_step
|
|
|
|
|
is_accu_step = self.not_equal(self.local_step, self.accumulation_steps)
|
|
|
|
|
|
|
|
|
|
# alloc status and clear should be right before gradoperation
|
|
|
|
|
init = self.alloc_status()
|
|
|
|
|
self.clear_before_grad(init)
|
|
|
|
|
grads = self.grad(self.network, weights)(input_ids,
|
|
|
|
|
input_mask,
|
|
|
|
|
token_type_id,
|
|
|
|
|
next_sentence_labels,
|
|
|
|
|
masked_lm_positions,
|
|
|
|
|
masked_lm_ids,
|
|
|
|
|
masked_lm_weights,
|
|
|
|
|
self.cast(scaling_sens,
|
|
|
|
|
mstype.float32))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accu_grads = self.hyper_map(add_grads, self.accu_grads, grads)
|
|
|
|
|
scaling = scaling_sens * self.degree * self.accumulation_steps
|
|
|
|
|
grads = self.hyper_map(F.partial(grad_scale, scaling), accu_grads)
|
|
|
|
|
grads = self.grad_reducer(grads)
|
|
|
|
|
|
|
|
|
|
self.get_status(init)
|
|
|
|
|
flag_sum = self.reduce_sum(init, (0,))
|
|
|
|
|
flag_reduce = self.overflow_reducer(flag_sum)
|
|
|
|
|
overflow = self.less_equal(self.base, flag_reduce)
|
|
|
|
|
overflow = self.logical_or(self.not_equal(self.accu_overflow, self.zero), overflow)
|
|
|
|
|
accu_overflow = self.select(overflow, self.one, self.zero)
|
|
|
|
|
self.accu_overflow = self.select(is_accu_step, accu_overflow, self.zero)
|
|
|
|
|
overflow = self.reshape(overflow, (()))
|
|
|
|
|
|
|
|
|
|
if is_accu_step:
|
|
|
|
|
succ = False
|
|
|
|
|
accu_succ = self.hyper_map(update_accu_grads, self.accu_grads, accu_grads)
|
|
|
|
|
succ = F.depend(succ, accu_succ)
|
|
|
|
|
else:
|
|
|
|
|
if sens is None:
|
|
|
|
|
overflow = self.loss_scaling_manager(self.loss_scale, overflow)
|
|
|
|
|
if overflow:
|
|
|
|
|
succ = False
|
|
|
|
|
else:
|
|
|
|
|
if self.enable_global_norm:
|
|
|
|
|
grads = C.clip_by_global_norm(grads, 1.0, None)
|
|
|
|
|
else:
|
|
|
|
|
grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads)
|
|
|
|
|
|
|
|
|
|
succ = self.optimizer(grads)
|
|
|
|
|
|
|
|
|
|
accu_succ = self.hyper_map(reset_accu_grads, self.accu_grads)
|
|
|
|
|
succ = F.depend(succ, accu_succ)
|
|
|
|
|
|
|
|
|
|
ret = (mean_loss, overflow, scaling_sens)
|
|
|
|
|
return F.depend(ret, succ)
|
|
|
|
|