parent
55a277d1de
commit
f11336a431
@ -0,0 +1,189 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "tools/optimizer/fusion/batchmatmul_fusion.h"
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include "src/ops/primitive_c.h"
|
||||
#include "src/param_value_lite.h"
|
||||
#include "schema/inner/model_generated.h"
|
||||
#include "utils/utils.h"
|
||||
#include "tools/optimizer/common/gllo_utils.h"
|
||||
#include "securec/include/securec.h"
|
||||
|
||||
namespace mindspore::opt {
|
||||
namespace {
|
||||
bool IsStackNode(const BaseRef &n) {
|
||||
if (utils::isa<CNodePtr>(n) || utils::isa<ValueNodePtr>(n)) {
|
||||
auto type = opt::GetCNodeType(n);
|
||||
return type == schema::PrimitiveType_Stack;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
bool IsFullConnectNode(const BaseRef &n) {
|
||||
if (utils::isa<CNodePtr>(n) || utils::isa<ValueNodePtr>(n)) {
|
||||
auto type = opt::GetCNodeType(n);
|
||||
return type == schema::PrimitiveType_FullConnection;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
void *GetInputAddr(const AnfNodePtr &node, size_t input_index) {
|
||||
MS_ASSERT(node != nullptr);
|
||||
if (!node->isa<CNode>()) {
|
||||
MS_LOG(ERROR) << "GetInputAddr not cnode";
|
||||
return nullptr;
|
||||
}
|
||||
auto cnode = node->cast<CNodePtr>();
|
||||
if (input_index >= cnode->inputs().size()) {
|
||||
MS_LOG(ERROR) << "input index error";
|
||||
return nullptr;
|
||||
}
|
||||
if (cnode->input(input_index)->isa<Parameter>()) {
|
||||
auto param_input = cnode->input(input_index)->cast<ParameterPtr>();
|
||||
auto param_value = std::dynamic_pointer_cast<ParamValueLite>(param_input->default_param());
|
||||
if (param_value == nullptr) {
|
||||
MS_LOG(ERROR) << "param not paramValueLite";
|
||||
return nullptr;
|
||||
}
|
||||
return param_value->tensor_addr();
|
||||
}
|
||||
MS_LOG(ERROR) << "input not paramter";
|
||||
return nullptr;
|
||||
}
|
||||
STATUS GetRightMatmulInputParamter(const CNodePtr &stack_node, const ParameterPtr &rmatmul_input) {
|
||||
MS_ASSERT(stack_node != nullptr);
|
||||
MS_ASSERT(right_matmul_input != nullptr);
|
||||
auto joint_fullconnect_size = stack_node->inputs().size() - 1;
|
||||
auto fc = stack_node->input(1)->cast<CNodePtr>();
|
||||
auto fc_weight = fc->input(2)->cast<ParameterPtr>();
|
||||
auto fc_weight_param = std::dynamic_pointer_cast<ParamValueLite>(fc_weight->default_param());
|
||||
auto tensor_size = fc_weight_param->tensor_size();
|
||||
auto rmatmul_input_shape = fc_weight_param->tensor_shape();
|
||||
auto new_tensor_data = new (std::nothrow) int8_t[joint_fullconnect_size * tensor_size];
|
||||
if (new_tensor_data == nullptr) {
|
||||
MS_LOG(ERROR) << "tensor_data is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
for (size_t i = 1; i < joint_fullconnect_size + 1; i++) {
|
||||
auto tensor_addr = GetInputAddr(stack_node->input(i), 2);
|
||||
if (tensor_addr == nullptr) {
|
||||
MS_LOG(ERROR) << "input tensor addr nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (EOK != memcpy_s(new_tensor_data + (i - 1) * tensor_size, tensor_size, tensor_addr, tensor_size)) {
|
||||
MS_LOG(ERROR) << "memcpy_s data failed";
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
rmatmul_input_shape.insert(rmatmul_input_shape.begin(), joint_fullconnect_size);
|
||||
auto type_ptr = TypeIdToType(fc_weight_param->tensor_type());
|
||||
auto abstract_tensor = std::make_shared<abstract::AbstractTensor>(type_ptr, rmatmul_input_shape);
|
||||
rmatmul_input->set_abstract(abstract_tensor);
|
||||
rmatmul_input->set_name(stack_node->fullname_with_scope() + "right_parameter");
|
||||
ParamValueLitePtr param_value = std::make_shared<ParamValueLite>();
|
||||
MS_ASSERT(param_value != nullptr);
|
||||
param_value->set_tensor_shape(rmatmul_input_shape);
|
||||
param_value->set_tensor_type(fc_weight_param->tensor_type());
|
||||
param_value->set_format(fc_weight_param->format());
|
||||
param_value->set_tensor_addr(new_tensor_data);
|
||||
param_value->set_tensor_size(joint_fullconnect_size * tensor_size);
|
||||
rmatmul_input->set_default_param(param_value);
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace
|
||||
const BaseRef BatchMatMulFusion::DefinePattern() const {
|
||||
auto pack_var = std::make_shared<CondVar>(IsStackNode);
|
||||
auto left_fullconnect_var = std::make_shared<CondVar>(IsFullConnectNode);
|
||||
auto right_fullconnect_var = std::make_shared<CondVar>(IsFullConnectNode);
|
||||
auto other_fullconnect_var = std::make_shared<SeqVar>();
|
||||
return VectorRef({pack_var, left_fullconnect_var, right_fullconnect_var, other_fullconnect_var});
|
||||
}
|
||||
|
||||
// slice +fullconnect ->batchmatmul
|
||||
const AnfNodePtr BatchMatMulFusion::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node,
|
||||
const EquivPtr &) const {
|
||||
MS_ASSERT(func_graph != nullptr);
|
||||
MS_ASSERT(node != nullptr);
|
||||
auto stack_cnode = node->cast<CNodePtr>();
|
||||
// check stack node all inputs must fullconnect
|
||||
for (size_t i = 1; i < stack_cnode->inputs().size(); i++) {
|
||||
auto input_node = stack_cnode->input(i);
|
||||
if (!IsFullConnectNode(input_node)) {
|
||||
MS_LOG(WARNING) << "batchmatmulfusion stack node all inputs must fullconnect type";
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
auto fullconnect_node = stack_cnode->input(1);
|
||||
MS_ASSERT(fullconnnect_node != nullptr);
|
||||
auto fullconnect_cnode = fullconnect_node->cast<CNodePtr>();
|
||||
MS_ASSERT(fullconnect_cnode->inputs().size() == 3);
|
||||
auto left_slice_node = fullconnect_cnode->input(1);
|
||||
auto left_slice_cnode = left_slice_node->cast<CNodePtr>();
|
||||
auto left_matmul_input = left_slice_cnode->input(1);
|
||||
auto right_reshape_node = fullconnect_cnode->input(2);
|
||||
|
||||
auto matmul_primitive = std::make_unique<schema::PrimitiveT>();
|
||||
std::unique_ptr<schema::MatMulT> attr = std::make_unique<schema::MatMulT>();
|
||||
matmul_primitive->value.type = schema::PrimitiveType_MatMul;
|
||||
matmul_primitive->value.value = attr.release();
|
||||
auto matmul_cvalue = lite::PrimitiveC::Create(matmul_primitive.release());
|
||||
// get matmul quantParams
|
||||
std::vector<schema::QuantParamT> jointed_quant_params;
|
||||
for (int i = 1; i < 9; i++) {
|
||||
auto fullconnect_node2 = stack_cnode->input(i)->cast<CNodePtr>();
|
||||
auto fc_prim = GetValueNode<std::shared_ptr<lite::PrimitiveC>>(fullconnect_node2->input(0));
|
||||
auto fc_input_quantParams = fc_prim->GetInputQuantParams();
|
||||
if (fc_input_quantParams.size() > 1 && !fc_input_quantParams[1].empty()) {
|
||||
jointed_quant_params.push_back(fc_input_quantParams[1][0]);
|
||||
}
|
||||
}
|
||||
auto fc_prim = GetValueNode<std::shared_ptr<lite::PrimitiveC>>(fullconnect_cnode->input(0));
|
||||
auto rmatmul_quant_params = fc_prim->GetInputQuantParams();
|
||||
rmatmul_quant_params.pop_back();
|
||||
rmatmul_quant_params.pop_back();
|
||||
// no bias quantParams
|
||||
rmatmul_quant_params.emplace_back(jointed_quant_params);
|
||||
matmul_cvalue->SetInputQuantParam(rmatmul_quant_params);
|
||||
matmul_cvalue->SetOutputQuantParam(fc_prim->GetOutputQuantParams());
|
||||
auto matmul_value_node = NewValueNode(std::shared_ptr<lite::PrimitiveC>(matmul_cvalue));
|
||||
std::vector<AnfNodePtr> matmul_inputs = {matmul_value_node, left_matmul_input};
|
||||
|
||||
// batchmatmul right node may be const
|
||||
if (right_reshape_node->isa<Parameter>()) {
|
||||
// return stack_cnode;
|
||||
auto rmatmul_paramter = func_graph->add_parameter();
|
||||
if (GetRightMatmulInputParamter(stack_cnode, rmatmul_paramter) != RET_OK) {
|
||||
MS_LOG(ERROR) << "GetRightMatmulInputParamter failed";
|
||||
return node;
|
||||
}
|
||||
auto prim = GetValueNode<std::shared_ptr<lite::PrimitiveC>>(matmul_value_node);
|
||||
prim->GetPrimitiveT()->value.AsMatMul()->transposeB = true;
|
||||
matmul_inputs.push_back(rmatmul_paramter);
|
||||
} else {
|
||||
auto right_reshape_cnode = right_reshape_node->cast<CNodePtr>();
|
||||
MS_ASSERT(right_reshape_cnode->inputs().size() > 1);
|
||||
auto right_transpose_node = right_reshape_cnode->input(1);
|
||||
auto right_transpose_cnode = right_transpose_node->cast<CNodePtr>();
|
||||
auto right_slice_node = right_transpose_cnode->input(1);
|
||||
auto right_slice_cnode = right_slice_node->cast<CNodePtr>();
|
||||
auto right_matmul_input = right_slice_cnode->input(1);
|
||||
matmul_inputs.push_back(right_matmul_input);
|
||||
}
|
||||
auto matmul_cnode = func_graph->NewCNode(matmul_inputs);
|
||||
matmul_cnode->set_fullname_with_scope("matmul_" + stack_cnode->fullname_with_scope());
|
||||
MS_LOG(INFO) << "stack node:" << stack_cnode->fullname_with_scope() << " batchmatmul fusion success";
|
||||
return matmul_cnode;
|
||||
}
|
||||
} // namespace mindspore::opt
|
@ -0,0 +1,34 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_PASS_FUSION_BATCHMATMUL_FUSION_H_
|
||||
#define MINDSPORE_LITE_SRC_PASS_FUSION_BATCHMATMUL_FUSION_H_
|
||||
|
||||
#include "backend/optimizer/common/optimizer.h"
|
||||
#include "tools/converter/converter_context.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class BatchMatMulFusion : public PatternProcessPass {
|
||||
public:
|
||||
explicit BatchMatMulFusion(bool multigraph = true) : PatternProcessPass("slice_fullconnect_fusion", multigraph) {}
|
||||
~BatchMatMulFusion() override = default;
|
||||
const BaseRef DefinePattern() const override;
|
||||
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||
};
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_LITE_SRC_PASS_FUSION_BATCHMATMUL_FUSION_H_
|
Loading…
Reference in new issue