!13341 Add MomentumWithWeightDecayScale kernel-2
From: @VectorSL Reviewed-by: @kingxian,@chujinjin Signed-off-by: @kingxianpull/13341/MERGE
commit
f4a5eb5219
@ -0,0 +1,152 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""momentum"""
|
||||
from mindspore.ops import functional as F, composite as C, operations as P
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore._checkparam import Validator
|
||||
from mindspore.nn.optim.optimizer import Optimizer
|
||||
|
||||
_momentum_opt = C.MultitypeFuncGraph("momentum_opt")
|
||||
|
||||
|
||||
@_momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
|
||||
def _tensor_run_opt_ext(opt, weight_decay, scale, momentum, learning_rate, gradient, weight, moment):
|
||||
"""Apply momentum optimizer to the weight parameter using Tensor."""
|
||||
success = F.depend(True, opt(weight_decay, scale, weight, moment, learning_rate, gradient, momentum))
|
||||
return success
|
||||
|
||||
|
||||
class Momentum(Optimizer):
|
||||
r"""
|
||||
Implements the Momentum algorithm.
|
||||
|
||||
Refer to the paper on the importance of initialization and momentum in deep learning for more details.
|
||||
|
||||
.. math::
|
||||
v_{t} = v_{t-1} \ast u + gradients
|
||||
|
||||
If use_nesterov is True:
|
||||
|
||||
.. math::
|
||||
p_{t} = p_{t-1} - (grad \ast lr + v_{t} \ast u \ast lr)
|
||||
|
||||
If use_nesterov is Flase:
|
||||
|
||||
.. math::
|
||||
p_{t} = p_{t-1} - lr \ast v_{t}
|
||||
|
||||
Here: where grad, lr, p, v and u denote the gradients, learning_rate, params, moments, and momentum respectively.
|
||||
|
||||
Note:
|
||||
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
|
||||
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
|
||||
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
|
||||
|
||||
To improve parameter groups performance, the customized order of parameters can be supported.
|
||||
|
||||
Args:
|
||||
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
|
||||
the element in `params` must be class `Parameter`. When the `params` is a list of `dict`, the "params",
|
||||
"lr", "weight_decay" and "order_params" are the keys can be parsed.
|
||||
|
||||
- params: Required. The value must be a list of `Parameter`.
|
||||
|
||||
- lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
|
||||
If not, the `learning_rate` in the API will be used.
|
||||
|
||||
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
|
||||
will be used. If not, the `weight_decay` in the API will be used.
|
||||
|
||||
- order_params: Optional. If "order_params" in the keys, the value must be the order of parameters and
|
||||
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
|
||||
in the value of 'order_params' must be in one of group parameters.
|
||||
|
||||
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning rate.
|
||||
When the learning_rate is an Iterable or a Tensor in a 1D dimension, use dynamic learning rate, then
|
||||
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
|
||||
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
|
||||
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero
|
||||
dimension, use fixed learning rate. Other cases are not supported. The float learning rate must be
|
||||
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
|
||||
momentum (float): Hyperparameter of type float, means momentum for the moving average.
|
||||
It must be at least 0.0.
|
||||
weight_decay (int, float): Weight decay (L2 penalty). It must be equal to or greater than 0.0. Default: 0.0.
|
||||
loss_scale (int, float): A floating point value for the loss scale. It must be greater than 0.0. Default: 1.0.
|
||||
use_nesterov (bool): Enable Nesterov momentum. Default: False.
|
||||
|
||||
Inputs:
|
||||
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
|
||||
|
||||
Outputs:
|
||||
tuple[bool], all elements are True.
|
||||
|
||||
Raises:
|
||||
ValueError: If the momentum is less than 0.0.
|
||||
TypeError: If the momentum is not a float or use_nesterov is not a bool.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
|
||||
Examples:
|
||||
>>> net = Net()
|
||||
>>> #1) All parameters use the same learning rate and weight decay
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>>
|
||||
>>> #2) Use parameter groups and set different values
|
||||
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
||||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
|
||||
... {'params': no_conv_params, 'lr': 0.01},
|
||||
... {'order_params': net.trainable_params()}]
|
||||
>>> optim = Momentum(group_params, learning_rate=0.1, momentum=0.9, weight_decay=0.0)
|
||||
>>> # The conv_params's parameters will use a learning rate of default value 0.1 and a weight decay of 0.01.
|
||||
>>> # The no_conv_params's parameters will use a learning rate of 0.01 and a weight decay of default value 0.0.
|
||||
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
|
||||
>>>
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
"""
|
||||
def __init__(self, params, learning_rate, momentum, weight_decay=0.0, loss_scale=1.0, use_nesterov=False):
|
||||
super(Momentum, self).__init__(learning_rate, params, weight_decay, loss_scale)
|
||||
Validator.check_value_type("momentum", momentum, [float], self.cls_name)
|
||||
if isinstance(momentum, float) and momentum < 0.0:
|
||||
raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum))
|
||||
self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum")
|
||||
self.params = self.parameters
|
||||
self.use_nesterov = Validator.check_bool(use_nesterov)
|
||||
self.moments = self.params.clone(prefix="moments", init='zeros')
|
||||
self.hyper_map = C.HyperMap()
|
||||
# Use FusedWeightScaleApplyMomentum to avoid extra kernel launch.
|
||||
self.opt = P.FusedWeightScaleApplyMomentum()
|
||||
|
||||
def construct(self, gradients):
|
||||
params = self.params
|
||||
moments = self.moments
|
||||
weight_decay = Tensor(0.0, mstype.float32)
|
||||
scale = Tensor(1.0, mstype.float32)
|
||||
if self.exec_weight_decay:
|
||||
weight_decay = self.weight_decay_tensor
|
||||
if self.need_scale:
|
||||
scale = self.reciprocal_scale
|
||||
lr = self.get_lr()
|
||||
if self.is_group_lr:
|
||||
success = self.hyper_map(F.partial(_momentum_opt, self.opt, weight_decay, scale, self.momentum),
|
||||
lr, gradients, params, moments)
|
||||
else:
|
||||
success = self.hyper_map(F.partial(_momentum_opt, self.opt, weight_decay, scale, self.momentum, lr),
|
||||
gradients, params, moments)
|
||||
return success
|
Loading…
Reference in new issue