|
|
|
@ -292,6 +292,10 @@ Status Normalize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *
|
|
|
|
|
bool ret = InitFromPixel(input->GetBuffer(), LPixelType::RGB, LDataType::UINT8, input->shape()[1], input->shape()[0],
|
|
|
|
|
lite_mat_rgb);
|
|
|
|
|
CHECK_FAIL_RETURN_UNEXPECTED(ret, "Creation of lite cv failed");
|
|
|
|
|
LiteMat lite_mat_float;
|
|
|
|
|
// change input to float
|
|
|
|
|
ret = ConvertTo(lite_mat_rgb, lite_mat_float, 1.0);
|
|
|
|
|
CHECK_FAIL_RETURN_UNEXPECTED(ret, "Conversion of lite cv to float failed");
|
|
|
|
|
|
|
|
|
|
mean->Squeeze();
|
|
|
|
|
if (mean->type() != DataType::DE_FLOAT32 || mean->Rank() != 1 || mean->shape()[0] != 3) {
|
|
|
|
@ -315,7 +319,7 @@ Status Normalize(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *
|
|
|
|
|
vec_std.push_back(std_c);
|
|
|
|
|
}
|
|
|
|
|
LiteMat lite_mat_norm;
|
|
|
|
|
ret = SubStractMeanNormalize(lite_mat_rgb, lite_mat_norm, vec_mean, vec_std);
|
|
|
|
|
ret = SubStractMeanNormalize(lite_mat_float, lite_mat_norm, vec_mean, vec_std);
|
|
|
|
|
CHECK_FAIL_RETURN_UNEXPECTED(ret, "Normalize in lite cv failed");
|
|
|
|
|
// create output Tensor based off of lite_mat_cut
|
|
|
|
|
std::shared_ptr<Tensor> output_tensor;
|
|
|
|
|