parent
6138b75518
commit
fc310bc5ae
@ -1,83 +0,0 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations as P
|
||||
|
||||
|
||||
class ShuffleV2Block(nn.Cell):
|
||||
def __init__(self, inp, oup, mid_channels, *, ksize, stride):
|
||||
super(ShuffleV2Block, self).__init__()
|
||||
self.stride = stride
|
||||
##assert stride in [1, 2]
|
||||
|
||||
self.mid_channels = mid_channels
|
||||
self.ksize = ksize
|
||||
pad = ksize // 2
|
||||
self.pad = pad
|
||||
self.inp = inp
|
||||
|
||||
outputs = oup - inp
|
||||
|
||||
branch_main = [
|
||||
# pw
|
||||
nn.Conv2d(in_channels=inp, out_channels=mid_channels, kernel_size=1, stride=1,
|
||||
pad_mode='pad', padding=0, has_bias=False),
|
||||
nn.BatchNorm2d(num_features=mid_channels, momentum=0.9),
|
||||
nn.ReLU(),
|
||||
# dw
|
||||
nn.Conv2d(in_channels=mid_channels, out_channels=mid_channels, kernel_size=ksize, stride=stride,
|
||||
pad_mode='pad', padding=pad, group=mid_channels, has_bias=False),
|
||||
nn.BatchNorm2d(num_features=mid_channels, momentum=0.9),
|
||||
# pw-linear
|
||||
nn.Conv2d(in_channels=mid_channels, out_channels=outputs, kernel_size=1, stride=1,
|
||||
pad_mode='pad', padding=0, has_bias=False),
|
||||
nn.BatchNorm2d(num_features=outputs, momentum=0.9),
|
||||
nn.ReLU(),
|
||||
]
|
||||
self.branch_main = nn.SequentialCell(branch_main)
|
||||
|
||||
if stride == 2:
|
||||
branch_proj = [
|
||||
# dw
|
||||
nn.Conv2d(in_channels=inp, out_channels=inp, kernel_size=ksize, stride=stride,
|
||||
pad_mode='pad', padding=pad, group=inp, has_bias=False),
|
||||
nn.BatchNorm2d(num_features=inp, momentum=0.9),
|
||||
# pw-linear
|
||||
nn.Conv2d(in_channels=inp, out_channels=inp, kernel_size=1, stride=1,
|
||||
pad_mode='pad', padding=0, has_bias=False),
|
||||
nn.BatchNorm2d(num_features=inp, momentum=0.9),
|
||||
nn.ReLU(),
|
||||
]
|
||||
self.branch_proj = nn.SequentialCell(branch_proj)
|
||||
else:
|
||||
self.branch_proj = None
|
||||
|
||||
def construct(self, old_x):
|
||||
if self.stride == 1:
|
||||
x_proj, x = self.channel_shuffle(old_x)
|
||||
return P.Concat(1)((x_proj, self.branch_main(x)))
|
||||
if self.stride == 2:
|
||||
x_proj = old_x
|
||||
x = old_x
|
||||
return P.Concat(1)((self.branch_proj(x_proj), self.branch_main(x)))
|
||||
return None
|
||||
|
||||
def channel_shuffle(self, x):
|
||||
batchsize, num_channels, height, width = P.Shape()(x)
|
||||
##assert (num_channels % 4 == 0)
|
||||
x = P.Reshape()(x, (batchsize * num_channels // 2, 2, height * width,))
|
||||
x = P.Transpose()(x, (1, 0, 2,))
|
||||
x = P.Reshape()(x, (2, -1, num_channels // 2, height, width,))
|
||||
return x[0], x[1]
|
@ -0,0 +1,38 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network"""
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
self.onehot = P.OneHot()
|
||||
self.sparse = sparse
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)
|
||||
|
||||
def construct(self, logit, label):
|
||||
if self.sparse:
|
||||
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||
loss = self.ce(logit, label)
|
||||
return loss
|
@ -1,60 +0,0 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network."""
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore import Tensor
|
||||
import mindspore.nn as nn
|
||||
|
||||
|
||||
class CrossEntropy(_Loss):
|
||||
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
|
||||
def __init__(self, smooth_factor=0, num_classes=1000, factor=0.4):
|
||||
super(CrossEntropy, self).__init__()
|
||||
self.factor = factor
|
||||
self.onehot = P.OneHot()
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits()
|
||||
self.mean = P.ReduceMean(False)
|
||||
|
||||
def construct(self, logits, label):
|
||||
logit, aux = logits
|
||||
one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||
loss_logit = self.ce(logit, one_hot_label)
|
||||
loss_logit = self.mean(loss_logit, 0)
|
||||
one_hot_label_aux = self.onehot(label, F.shape(aux)[1], self.on_value, self.off_value)
|
||||
loss_aux = self.ce(aux, one_hot_label_aux)
|
||||
loss_aux = self.mean(loss_aux, 0)
|
||||
return loss_logit + self.factor*loss_aux
|
||||
|
||||
|
||||
class CrossEntropy_Val(_Loss):
|
||||
"""the redefined loss function with SoftmaxCrossEntropyWithLogits, will be used in inference process"""
|
||||
def __init__(self, smooth_factor=0, num_classes=1000):
|
||||
super(CrossEntropy_Val, self).__init__()
|
||||
self.onehot = P.OneHot()
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits()
|
||||
self.mean = P.ReduceMean(False)
|
||||
|
||||
def construct(self, logits, label):
|
||||
one_hot_label = self.onehot(label, F.shape(logits)[1], self.on_value, self.off_value)
|
||||
loss_logit = self.ce(logits, one_hot_label)
|
||||
loss_logit = self.mean(loss_logit, 0)
|
||||
return loss_logit
|
Loading…
Reference in new issue