|
|
|
@ -1350,8 +1350,8 @@ class Concat(PrimitiveWithInfer):
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_stack_shape(x_shape, x_type, axis):
|
|
|
|
|
"""for satck output shape"""
|
|
|
|
|
def _get_pack_shape(x_shape, x_type, axis):
|
|
|
|
|
"""for pack output shape"""
|
|
|
|
|
validator.check_type("shape", x_shape, [tuple])
|
|
|
|
|
validator.check_integer("len of input_x shape", len(x_shape), 0, Rel.GT)
|
|
|
|
|
validator.check_subclass("shape0", x_type[0], mstype.tensor)
|
|
|
|
@ -1368,43 +1368,40 @@ def _get_stack_shape(x_shape, x_type, axis):
|
|
|
|
|
validator.check('x_type[%d]' % i, x_type[i], 'base', x_type[0])
|
|
|
|
|
for j in range(rank_base):
|
|
|
|
|
if v[j] != x_shape[0][j]:
|
|
|
|
|
raise ValueError("Stack evaluator element %d shape in input can not stack with first element" % i)
|
|
|
|
|
raise ValueError("Pack evaluator element %d shape in input can not pack with first element" % i)
|
|
|
|
|
out_shape.insert(axis, N)
|
|
|
|
|
return out_shape
|
|
|
|
|
|
|
|
|
|
class Stack(PrimitiveWithInfer):
|
|
|
|
|
class Pack(PrimitiveWithInfer):
|
|
|
|
|
r"""
|
|
|
|
|
Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor.
|
|
|
|
|
Packs a list of tensors in specified axis.
|
|
|
|
|
|
|
|
|
|
Packs the list of tensors in `input_x` into a tensor with rank one higher than
|
|
|
|
|
each tensor in `input_x`, by packing them along the `axis` dimension.
|
|
|
|
|
Given a list of length `N` of tensors of shape `(A, B, C)`;
|
|
|
|
|
Packs the list of input tensors with the same rank `R`, output is a tensor of rank `(R+1)`.
|
|
|
|
|
|
|
|
|
|
If `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`.
|
|
|
|
|
|
|
|
|
|
If `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`. Etc.
|
|
|
|
|
Given input tensors of shape :math:`(x_1, x_2, ..., x_R)`. Set the number of input tensors as `N`.
|
|
|
|
|
If :math:`0 \le axis`, the output tensor shape is :math:`(x_1, x_2, ..., x_{axis}, N, x_{axis+1}, ..., x_R)`.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
axis (int): The axis to stack along. Negative values wrap around,
|
|
|
|
|
so the valid range is [-(R+1), R+1). Default: 0.
|
|
|
|
|
axis (int): Dimension along which to pack. Default: 0.
|
|
|
|
|
Negative values wrap around. The range is [-(R+1), R+1).
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
|
- **input_x** (Union[tuple, list]) - A Tuple or list of Tensor objects with the same shape and type.
|
|
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
|
Tensor. A stacked Tensor with the same type as values.
|
|
|
|
|
Tensor. A packed Tensor with the same type as `input_x`.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> data1 = Tensor(np.array([0, 1]).astype(np.float32))
|
|
|
|
|
>>> data2 = Tensor(np.array([2, 3]).astype(np.float32))
|
|
|
|
|
>>> op = P.Stack()
|
|
|
|
|
>>> output = op([data1, data2])
|
|
|
|
|
>>> pack = P.Pack()
|
|
|
|
|
>>> output = pack([data1, data2])
|
|
|
|
|
[[0, 1], [2, 3]]
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
@prim_attr_register
|
|
|
|
|
def __init__(self, axis=0):
|
|
|
|
|
"""init Stack"""
|
|
|
|
|
"""init Pack"""
|
|
|
|
|
self.__setattr_flag__ = True
|
|
|
|
|
validator.check_type("axis", axis, [int])
|
|
|
|
|
self.axis = axis
|
|
|
|
@ -1413,38 +1410,33 @@ class Stack(PrimitiveWithInfer):
|
|
|
|
|
x_shape = value['shape']
|
|
|
|
|
x_type = value['dtype']
|
|
|
|
|
self.add_prim_attr('num', len(x_shape))
|
|
|
|
|
all_shape = _get_stack_shape(x_shape, x_type, self.axis)
|
|
|
|
|
all_shape = _get_pack_shape(x_shape, x_type, self.axis)
|
|
|
|
|
out = {'shape': all_shape,
|
|
|
|
|
'dtype': x_type[0],
|
|
|
|
|
'value': None}
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Unstack(PrimitiveWithInfer):
|
|
|
|
|
class Unpack(PrimitiveWithInfer):
|
|
|
|
|
r"""
|
|
|
|
|
Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors.
|
|
|
|
|
|
|
|
|
|
Unpacks num tensors from value by chipping it along the axis dimension.
|
|
|
|
|
If num is not specified (the default), it is inferred from value's shape.
|
|
|
|
|
If value.shape[axis] is not known, ValueError is raised.
|
|
|
|
|
Unpacks tensor in specified axis.
|
|
|
|
|
|
|
|
|
|
For example, given a tensor of shape (A, B, C, D);
|
|
|
|
|
Unpacks a tensor of rank `R` along axis dimension, output tensors will have rank `(R-1)`.
|
|
|
|
|
|
|
|
|
|
If axis == 0 then the i'th tensor in output is the slice value[i, :, :, :] and
|
|
|
|
|
each tensor in output will have shape (B, C, D). (Note that the dimension unpacked along is gone, unlike split).
|
|
|
|
|
Given a tensor of shape :math:`(x_1, x_2, ..., x_R)`. If :math:`0 \le axis`,
|
|
|
|
|
the shape of tensor in output is :math:`(x_1, x_2, ..., x_{axis}, x_{axis+2}, ..., x_R)`.
|
|
|
|
|
|
|
|
|
|
If axis == 1 then the i'th tensor in output is the slice value[:, i, :, :] and
|
|
|
|
|
each tensor in output will have shape (A, C, D). Etc.
|
|
|
|
|
|
|
|
|
|
This is the opposite of stack.
|
|
|
|
|
This is the opposite of pack.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
axis (int): The axis to unstack along. Defaults to the first dimension.
|
|
|
|
|
Negative values wrap around, so the valid range is [-R, R).
|
|
|
|
|
axis (int): Dimension along which to pack. Default: 0.
|
|
|
|
|
Negative values wrap around. The range is [-R, R).
|
|
|
|
|
num (int): The number of tensors to be unpacked to. Default : "None".
|
|
|
|
|
If `num` is not specified, it is inferred from the shape of `input_x`.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
|
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
|
|
|
|
|
A rank R > 0 Tensor to be unstacked.
|
|
|
|
|
A rank R > 0 Tensor to be unpacked.
|
|
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
|
A tuple of Tensors, the shape of each objects is same.
|
|
|
|
@ -1454,15 +1446,15 @@ class Unstack(PrimitiveWithInfer):
|
|
|
|
|
or if len(input_x.shape[axis]) not equal to num.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> unstack = P.Unstack()
|
|
|
|
|
>>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))
|
|
|
|
|
>>> output = unstack(x)
|
|
|
|
|
>>> unpack = P.Unpack()
|
|
|
|
|
>>> input_x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))
|
|
|
|
|
>>> output = unpack(input_x)
|
|
|
|
|
([1, 1, 1, 1], [2, 2, 2, 2])
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
@prim_attr_register
|
|
|
|
|
def __init__(self, axis=0):
|
|
|
|
|
"""init Unstack"""
|
|
|
|
|
"""init Unpack"""
|
|
|
|
|
self.__setattr_flag__ = True
|
|
|
|
|
validator.check_type("axis", axis, [int])
|
|
|
|
|
self.axis = axis
|
|
|
|
@ -1479,7 +1471,7 @@ class Unstack(PrimitiveWithInfer):
|
|
|
|
|
validator.check_integer("output_num", output_num, 0, Rel.GT)
|
|
|
|
|
self.add_prim_attr('num', output_num)
|
|
|
|
|
output_valid_check = x_shape[self.axis] - output_num
|
|
|
|
|
validator.check_integer("the dimension which to unstack divides output_num", output_valid_check, 0, Rel.EQ)
|
|
|
|
|
validator.check_integer("The dimension which to unpack divides output_num", output_valid_check, 0, Rel.EQ)
|
|
|
|
|
out_shapes = []
|
|
|
|
|
out_dtypes = []
|
|
|
|
|
out_shape = x_shape[:self.axis] + x_shape[self.axis + 1:]
|
|
|
|
|