|
|
|
@ -3227,7 +3227,8 @@ class Dropout(PrimitiveWithInfer):
|
|
|
|
|
During training, randomly zeroes some of the elements of the input tensor with probability.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
drop_prob (float): probability of an element to be zeroed. Default: 0.
|
|
|
|
|
keep_prob (float): The keep rate, between 0 and 1, e.g. keep_prob = 0.9,
|
|
|
|
|
means dropping out 10% of input units.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
|
- **shape** (tuple[int]) - The shape of target mask.
|
|
|
|
@ -3236,14 +3237,14 @@ class Dropout(PrimitiveWithInfer):
|
|
|
|
|
Tensor, the value of generated mask for input shape.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> dropout = P.Dropout(drop_prob=0.5)
|
|
|
|
|
>>> dropout = P.Dropout(keep_prob=0.5)
|
|
|
|
|
>>> in = Tensor((20, 16, 50, 50))
|
|
|
|
|
>>> out = dropout(in)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
@prim_attr_register
|
|
|
|
|
def __init__(self, drop_prob=0):
|
|
|
|
|
self.drop_prob = validator.check_number_range("drop_prob", drop_prob, 0, 1, Rel.INC_BOTH, self.name)
|
|
|
|
|
def __init__(self, keep_prob=0.5):
|
|
|
|
|
self.keep_prob = validator.check_number_range("keep_prob", keep_prob, 0, 1, Rel.INC_RIGHT, self.name)
|
|
|
|
|
|
|
|
|
|
def infer_shape(self, x_shape):
|
|
|
|
|
validator.check_integer("x_shape", len(x_shape), 1, Rel.GE, self.name)
|
|
|
|
@ -3262,7 +3263,8 @@ class DropoutGrad(PrimitiveWithInfer):
|
|
|
|
|
of the input tensor with probability.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
drop_prob (float): probability of an element to be zeroed. Default: 0.
|
|
|
|
|
keep_prob (float): The keep rate, between 0 and 1, e.g. keep_prob = 0.9,
|
|
|
|
|
means dropping out 10% of input units.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
|
- **shape** (tuple[int]) - The shape of target mask.
|
|
|
|
@ -3271,14 +3273,14 @@ class DropoutGrad(PrimitiveWithInfer):
|
|
|
|
|
Tensor, the value of generated mask for input shape.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> dropout_grad = P.DropoutGrad(drop_prob=0.5)
|
|
|
|
|
>>> dropout_grad = P.DropoutGrad(keep_prob=0.5)
|
|
|
|
|
>>> in = Tensor((20, 16, 50, 50))
|
|
|
|
|
>>> out = dropout_grad(in)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
@prim_attr_register
|
|
|
|
|
def __init__(self, drop_prob=0):
|
|
|
|
|
self.drop_prob = validator.check_number_range("drop_prob", drop_prob, 0, 1, Rel.INC_BOTH, self.name)
|
|
|
|
|
def __init__(self, keep_prob=0.5):
|
|
|
|
|
self.keep_prob = validator.check_number_range("keep_prob", keep_prob, 0, 1, Rel.INC_RIGHT, self.name)
|
|
|
|
|
|
|
|
|
|
def infer_shape(self, dy_shape, mask_shape):
|
|
|
|
|
return dy_shape
|
|
|
|
|