!12843 Add more callable test and clean the input check for tensor ops

From: @alexyuyue
Reviewed-by: @robingrosman,@nsyca
Signed-off-by: @robingrosman
pull/12843/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit fe53c71b3b

@ -40,8 +40,7 @@ Status TensorOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<T
Status TensorOp::Compute(const TensorRow &input, TensorRow *output) {
IO_CHECK_VECTOR(input, output);
if (OneToOne()) {
if (input.size() != 1)
return Status(StatusCode::kMDUnexpectedError, "The op is OneToOne, can only accept one tensor as input.");
CHECK_FAIL_RETURN_UNEXPECTED(input.size() == 1, "The op is OneToOne, can only accept one tensor as input.");
output->resize(1);
return Compute(input[0], &(*output)[0]);
}

@ -63,24 +63,6 @@ class TextTensorOperation(TensorOperation):
"""
Base class of Text Tensor Ops
"""
def __call__(self, *tensor_list):
tensor_array = []
output_list = []
# Combine input tensor_list to a TensorRow
for input_tensor in tensor_list:
if not isinstance(input_tensor, (str, list)):
raise TypeError("Input should be string or list of strings, got {}.".format(type(input_tensor)))
tensor_array.append(cde.Tensor(np.asarray(input_tensor)))
callable_op = cde.Execute(self.parse())
output_list = callable_op(tensor_array)
for i, element in enumerate(output_list):
arr = element.as_array()
if arr.dtype.char == 'S':
output_list[i] = np.char.decode(arr)
else:
output_list[i] = arr
return output_list[0] if len(output_list) == 1 else output_list
def parse(self):
raise NotImplementedError("TextTensorOperation has to implement parse() method.")

@ -27,8 +27,20 @@ from ..core.datatypes import mstype_to_detype
class TensorOperation:
def __call__(self):
raise NotImplementedError("TensorOperation has to implement __call__() method.")
"""
Base class Tensor Ops
"""
def __call__(self, *input_tensor_list):
tensor_row = [cde.Tensor(np.asarray(tensor)) for tensor in input_tensor_list]
callable_op = cde.Execute(self.parse())
output_tensor_list = callable_op(tensor_row)
for i, element in enumerate(output_tensor_list):
arr = element.as_array()
if arr.dtype.char == 'S':
output_tensor_list[i] = np.char.decode(arr)
else:
output_tensor_list[i] = arr
return output_tensor_list[0] if len(output_tensor_list) == 1 else tuple(output_tensor_list)
def parse(self):
raise NotImplementedError("TensorOperation has to implement parse() method.")

@ -62,24 +62,11 @@ class ImageTensorOperation(TensorOperation):
"""
Base class of Image Tensor Ops
"""
def __call__(self, *tensor_list):
tensor_array = []
output_list = []
# Combine input tensor_list to a TensorRow
for input_tensor in tensor_list:
if not isinstance(input_tensor, (np.ndarray, Image.Image)):
raise TypeError("Input should be NumPy or PIL image, got {}.".format(type(input_tensor)))
tensor_array.append(cde.Tensor(np.asarray(input_tensor)))
callable_op = cde.Execute(self.parse())
output_list = callable_op(tensor_array)
for i, element in enumerate(output_list):
arr = element.as_array()
if arr.dtype.char == 'S':
output_list[i] = np.char.decode(arr)
else:
output_list[i] = arr
return output_list[0] if len(output_list) == 1 else output_list
def __call__(self, *input_tensor_list):
for tensor in input_tensor_list:
if not isinstance(tensor, (np.ndarray, Image.Image)):
raise TypeError("Input should be NumPy or PIL image, got {}.".format(type(tensor)))
return super().__call__(*input_tensor_list)
def parse(self):
raise NotImplementedError("ImageTensorOperation has to implement parse() method.")
@ -285,9 +272,7 @@ class Decode(ImageTensorOperation):
"""
if not isinstance(img, np.ndarray) or img.ndim != 1 or img.dtype.type is np.str_:
raise TypeError("Input should be an encoded image with 1-D NumPy type, got {}.".format(type(img)))
decode = cde.Execute(cde.DecodeOperation(self.rgb))
img = decode(cde.Tensor(np.asarray(img)))
return img.as_array()
return super().__call__(img)
def parse(self):
return cde.DecodeOperation(self.rgb)

@ -35,14 +35,12 @@ def test_HWC2CHW_callable():
Test HWC2CHW is callable
"""
logger.info("Test HWC2CHW callable")
img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
img = c_vision.Decode()(img)
assert img.shape == (2268, 4032, 3)
img = np.zeros([50, 50, 3])
assert img.shape == (50, 50, 3)
# test one tensor
img1 = c_vision.HWC2CHW()(img)
assert img1.shape == (3, 2268, 4032)
assert img1.shape == (3, 50, 50)
# test input multiple tensors
with pytest.raises(RuntimeError) as info:
@ -55,7 +53,6 @@ def test_HWC2CHW_callable():
assert "The op is OneToOne, can only accept one tensor as input." in str(info.value)
def test_HWC2CHW(plot=False):
"""
Test HWC2CHW

@ -20,6 +20,24 @@ import mindspore.dataset as ds
import mindspore.dataset.text as text
def test_ngram_callable():
"""
Test ngram op is callable
"""
op = text.Ngram(2, separator="-")
input1 = " WildRose Country"
input1 = np.array(input1.split(" "), dtype='S')
expect1 = ['-WildRose', 'WildRose-Country']
result1 = op(input1)
assert np.array_equal(result1, expect1)
input2 = ["WildRose Country", "Canada's Ocean Playground", "Land of Living Skies"]
expect2 = ["WildRose Country-Canada's Ocean Playground", "Canada's Ocean Playground-Land of Living Skies"]
result2 = op(input2)
assert np.array_equal(result2, expect2)
def test_multiple_ngrams():
""" test n-gram where n is a list of integers"""
plates_mottos = ["WildRose Country", "Canada's Ocean Playground", "Land of Living Skies"]
@ -105,6 +123,7 @@ def test_corner_cases():
if __name__ == '__main__':
test_ngram_callable()
test_multiple_ngrams()
test_simple_ngram()
test_corner_cases()

@ -30,6 +30,17 @@ def compare(in1, in2, length, out1, out2):
np.testing.assert_array_equal(out2, d["s2"])
def test_callable():
op = text.TruncateSequencePair(3)
data = [["1", "2", "3"], ["4", "5"]]
result_text = op(*data)
column1, column2 = op(["1", "2", "3"], ["4", "5"])
assert np.array_equal(result_text[0], ['1', '2'])
assert np.array_equal(result_text[1], ['4'])
assert np.array_equal(column1, ['1', '2'])
assert np.array_equal(column2, ['4'])
def test_basics():
compare(in1=[1, 2, 3], in2=[4, 5], length=4, out1=[1, 2], out2=[4, 5])
compare(in1=[1, 2], in2=[4, 5], length=4, out1=[1, 2], out2=[4, 5])
@ -59,6 +70,7 @@ def test_exceptions():
if __name__ == "__main__":
test_callable()
test_basics()
test_basics_odd()
test_basics_str()

@ -16,10 +16,34 @@
Testing SlidingWindow in mindspore.dataset
"""
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.text as text
def test_sliding_window_callable():
"""
Test sliding window op is callable
"""
op = text.SlidingWindow(2, 0)
input1 = ["", "", "", "", ""]
expect = np.array([['', ''], ['', ''], ['', ''], ['', '']])
result = op(input1)
assert np.array_equal(result, expect)
# test 2D input
input2 = [["", "", "", "", ""]]
with pytest.raises(RuntimeError) as info:
_ = op(input2)
assert "SlidingWindow: SlidingWindow supports 1D input only for now." in str(info.value)
# test input multiple tensors
with pytest.raises(RuntimeError) as info:
_ = op(input1, input1)
assert "The op is OneToOne, can only accept one tensor as input." in str(info.value)
def test_sliding_window_string():
""" test sliding_window with string type"""
inputs = [["", "", "", "", ""]]
@ -104,6 +128,7 @@ def test_sliding_window_exception():
if __name__ == '__main__':
test_sliding_window_callable()
test_sliding_window_string()
test_sliding_window_number()
test_sliding_window_big_width()

@ -50,6 +50,12 @@ def test_to_number_eager():
_ = op(*input_strings)
assert "The op is OneToOne, can only accept one tensor as input." in str(info.value)
# test input invalid tensor
invalid_input = [["1", "2", "3"], ["4", "5"]]
with pytest.raises(RuntimeError) as info:
_ = op(invalid_input)
assert "Invalid data type." in str(info.value)
def test_to_number_typical_case_integral():
input_strings = [["-121", "14"], ["-2219", "7623"], ["-8162536", "162371864"],

Loading…
Cancel
Save