You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
4.1 KiB
94 lines
4.1 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor, Parameter, context
|
|
from mindspore.nn import TrainOneStepCell
|
|
from mindspore.nn.optim import FTRL, LazyAdam
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(enable_sparse=True,
|
|
mode=context.GRAPH_MODE,
|
|
device_target="Ascend")
|
|
|
|
class NetWithSparseGatherV2(nn.Cell):
|
|
def __init__(self):
|
|
super(NetWithSparseGatherV2, self).__init__()
|
|
self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1")
|
|
self.weight2 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight2")
|
|
self.axis = 0
|
|
self.gather = P.SparseGatherV2()
|
|
|
|
def construct(self, indices, label):
|
|
return self.gather(self.weight1, indices, self.axis) + self.weight2
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_ftrl_net():
|
|
indices = Tensor(np.array([0, 0, 1]).astype(np.int32))
|
|
label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
|
|
net = NetWithSparseGatherV2()
|
|
|
|
optimizer = FTRL(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
|
|
optimizer.target = 'Ascend'
|
|
train_network = TrainOneStepCell(net, optimizer)
|
|
output = train_network(indices, label)
|
|
np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]]))
|
|
np.allclose(net.weight1.asnumpy(), np.array([[[0.7884067, 0.7884067]],
|
|
[[0.68213105, 0.68213105]],
|
|
[[1.0, 1.0]]]))
|
|
np.allclose(net.weight2.asnumpy(), np.array([[[0.6821311, 0.6821311]],
|
|
[[0.6821311, 0.6821311]],
|
|
[[0.6821311, 0.6821311]]]))
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_lazy_adam_net():
|
|
indices = Tensor(np.array([0, 0, 1]).astype(np.int32))
|
|
label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
|
|
net = NetWithSparseGatherV2()
|
|
|
|
optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
|
|
optimizer.target = 'Ascend'
|
|
train_network = TrainOneStepCell(net, optimizer)
|
|
output = train_network(indices, label)
|
|
np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]]))
|
|
np.allclose(net.weight1.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[1.0, 1.0]]]))
|
|
np.allclose(net.weight2.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[0.9, 0.9]]]))
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.env_onecard
|
|
def test_lazy_adam_net_sparse():
|
|
indices = Tensor(np.array([0, 0, 1]).astype(np.int32))
|
|
label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
|
|
net = NetWithSparseGatherV2()
|
|
|
|
optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
|
|
# will use sparse_opt in LazyAdam
|
|
optimizer.target = 'CPU'
|
|
train_network = TrainOneStepCell(net, optimizer)
|
|
output = train_network(indices, label)
|
|
np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]]))
|
|
np.allclose(net.weight1.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[1.0, 1.0]]]))
|
|
np.allclose(net.weight2.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[0.9, 0.9]]]))
|