You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
6.6 KiB
174 lines
6.6 KiB
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import os
|
|
import numpy as np
|
|
from mindspore.communication.management import get_rank
|
|
from mindspore import Tensor
|
|
from mindspore import Parameter
|
|
from mindspore import context
|
|
from mindspore.ops import operations as P
|
|
import mindspore.nn as nn
|
|
from mindspore.train import Model
|
|
from mindspore.context import ParallelMode
|
|
from mindspore.communication.management import init
|
|
from mindspore.communication.management import get_group_size
|
|
|
|
|
|
class FakeDataInitMode:
|
|
RandomInit = 0
|
|
OnesInit = 1
|
|
UniqueInit = 2
|
|
ZerosInit = 3
|
|
|
|
class FakeData:
|
|
def __init__(self, size=1024, batch_size=32, image_size=(3, 224, 224), num_class=10,
|
|
random_offset=0, use_parallel=False, fakedata_mode=FakeDataInitMode.RandomInit):
|
|
|
|
self.size = size
|
|
self.rank_batch_size = batch_size
|
|
self.total_batch_size = self.rank_batch_size
|
|
self.random_offset = random_offset
|
|
self.image_size = image_size
|
|
self.num_class = num_class
|
|
self.rank_size = 1
|
|
self.rank_id = 0
|
|
self.batch_index = 0
|
|
self.image_data_type = np.float32
|
|
self.label_data_type = np.float32
|
|
self.is_onehot = True
|
|
self.fakedata_mode = fakedata_mode
|
|
|
|
if use_parallel:
|
|
if 'CONTEXT_DEVICE_TARGET' in os.environ and os.environ['CONTEXT_DEVICE_TARGET'] == 'GPU':
|
|
init(backend_name='nccl')
|
|
else:
|
|
init(backend_name='hccl')
|
|
self.rank_size = get_group_size()
|
|
self.rank_id = get_rank()
|
|
self.total_batch_size = self.rank_batch_size * self.rank_size
|
|
assert self.size % self.total_batch_size == 0
|
|
self.total_batch_data_size = (self.rank_size, self.rank_batch_size) + image_size
|
|
|
|
def get_dataset_size(self):
|
|
return int(self.size / self.total_batch_size)
|
|
|
|
def get_reeat_count(self):
|
|
return 1
|
|
|
|
def set_image_data_type(self, data_type):
|
|
self.image_data_type = data_type
|
|
|
|
def set_label_data_type(self, data_type):
|
|
self.label_data_type = data_type
|
|
|
|
def set_label_onehot(self, is_onehot=True):
|
|
self.is_onehot = is_onehot
|
|
|
|
def create_tuple_iterator(self, num_epochs=-1, do_copy=False):
|
|
return self
|
|
|
|
def __getitem__(self, batch_index):
|
|
if batch_index * self.total_batch_size >= len(self):
|
|
raise IndexError("{} index out of range".format(self.__class__.__name__))
|
|
rng_state = np.random.get_state()
|
|
np.random.seed(batch_index + self.random_offset)
|
|
if self.fakedata_mode == FakeDataInitMode.OnesInit:
|
|
img = np.ones(self.total_batch_data_size)
|
|
elif self.fakedata_mode == FakeDataInitMode.ZerosInit:
|
|
img = np.zeros(self.total_batch_data_size)
|
|
elif self.fakedata_mode == FakeDataInitMode.UniqueInit:
|
|
total_size = 1
|
|
for i in self.total_batch_data_size:
|
|
total_size = total_size* i
|
|
img = np.reshape(np.arange(total_size)*0.0001, self.total_batch_data_size)
|
|
else:
|
|
img = np.random.randn(*self.total_batch_data_size)
|
|
target = np.random.randint(0, self.num_class, size=(self.rank_size, self.rank_batch_size))
|
|
np.random.set_state(rng_state)
|
|
img = img[self.rank_id]
|
|
target = target[self.rank_id]
|
|
img_ret = img.astype(self.image_data_type)
|
|
target_ret = target.astype(self.label_data_type)
|
|
if self.is_onehot:
|
|
target_onehot = np.zeros(shape=(self.rank_batch_size, self.num_class))
|
|
target_onehot[np.arange(self.rank_batch_size), target] = 1
|
|
target_ret = target_onehot.astype(self.label_data_type)
|
|
return Tensor(img_ret), Tensor(target_ret)
|
|
|
|
def __len__(self):
|
|
return self.size
|
|
|
|
def __iter__(self):
|
|
self.batch_index = 0
|
|
return self
|
|
|
|
def reset(self):
|
|
self.batch_index = 0
|
|
|
|
def __next__(self):
|
|
if self.batch_index * self.total_batch_size < len(self):
|
|
data = self[self.batch_index]
|
|
self.batch_index += 1
|
|
return data
|
|
raise StopIteration
|
|
|
|
|
|
class NetWithSparseGatherV2(nn.Cell):
|
|
def __init__(self, strategy=None, sparse=True):
|
|
super(NetWithSparseGatherV2, self).__init__()
|
|
self.axis = 0
|
|
self.sparse = sparse
|
|
if sparse:
|
|
self.weight = Parameter(Tensor(np.ones([8, 8]).astype(np.float32)), name="weight")
|
|
self.gather = P.SparseGatherV2()
|
|
else:
|
|
self.weight = Parameter(Tensor(np.ones([8, 8]).astype(np.float32)), name="weight")
|
|
self.gather = P.Gather()
|
|
if strategy is not None:
|
|
self.gather.shard(strategy)
|
|
|
|
def construct(self, indices):
|
|
x = self.gather(self.weight, indices, self.axis)
|
|
return x
|
|
|
|
def train_mindspore_impl(self, indices, epoch, batch_size, use_parallel=True):
|
|
ds = FakeData(size=8, batch_size=batch_size, num_class=8, image_size=(), use_parallel=use_parallel)
|
|
ds.set_image_data_type(np.int32)
|
|
net = self
|
|
net.set_train()
|
|
loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
optimizer = nn.Adam(net.trainable_params())
|
|
optimizer.target = "CPU"
|
|
model = Model(net, loss, optimizer)
|
|
for _ in range(epoch):
|
|
model.train(1, ds, dataset_sink_mode=False)
|
|
output = net(indices)
|
|
return output
|
|
|
|
|
|
def test_allreduce_sparsegatherv2_adam_auto_parallel():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
|
|
init(backend_name='hccl')
|
|
context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=8, gradients_mean=True)
|
|
indices = Tensor(np.array([0, 1, 2, 3, 4, 5, 6, 7]).astype(np.int32))
|
|
epoch = 3
|
|
batch_size = 1
|
|
context.set_context(enable_sparse=True)
|
|
net = NetWithSparseGatherV2(sparse=True)
|
|
output_sparse = net.train_mindspore_impl(indices, epoch, batch_size)
|
|
net = NetWithSparseGatherV2(sparse=False)
|
|
output = net.train_mindspore_impl(indices, epoch, batch_size)
|
|
assert np.allclose(output.asnumpy(), output_sparse.asnumpy(), 0.001, 0.001)
|